Abstract:Abstract: At present, large quantities of straws are burned in field in China, which not only wastes a renewable resource, but also causes serious air pollution. Anaerobic digestion of straws is an alternative method that may produce a clean fuel for energy generation. Currently, more research on impact of digestion for quality content of total solid of manure or mixed materials for the fermentation substrate has been studied, but research is limited in continuous stirred tank reactor for a single type of feedstock. Although the characteristics of anaerobic digestion and properties of gas production at the process of continuous stirred tank reactor and semi- continuous feeding mode has been examined for crushed straw and silage straw as the fermentation substrate, but the operation parameters of such system has not been determined. Thus, in order to obtain the corresponding relationship between solid matter retention time for substrate and the characteristics of gas production, a comparative study to determine biogas production in batch fermentation and semi-continuous fermentation process was carried out under medium temperature conditions with rice straw as feedstock. The effect of quality content of total solid in the batch and continuous biogas fermentation of straws was studied. The volume of gas production rate and the rate of raw material gas production were used as characteristic indicators in order to obtain parameter on optimum quality content of total solid and solid matter retention time for biogas plant with straws. The results showed that fermentation concentration of single straw type used for anaerobic fermentation raw material influenced the gas volume rate under the condition of batch fermentation. With the increase of total solid concentration, the volume of gas production rate was increased in batch fermentation process, but the trend of the increase was gradually decreasing. The volume of gas production rate was improved under condition of intermittent stirred compared with static batch fermentation. Especially, the improving effect was more obvious for the group of high-concentration of TS. However, the volume of gas production rate was more improved for the group of high-concentration of TS under semi-continuous feed conditions, but with the solid matter retention time (SRT) shortened, the rate of raw material gas production with every treatment was gradually decreased. Considering the characteristics of gas production and engineering applications, it was recommended that the concentration of batch fermentation should not exceed 8% for pure straw. For semi-continuous fermentation, if the straw composition in total solids content was 8%, SRT was designed as 20 days (the volume of gas production rate of 1.00 m3/(m3·d)). If the total solids content was 6%, SRT was designed as 15 days (the volume of gas production rate of 0.75 m3/(m3·d). The operating parameters provided an operational reference for biogas plant only with straw.