高速电磁阀电磁力近似模型的构建与分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51379041,51279037);教育部科学技术研究资助项目(113060A)


Modeling and analysis of electromagnetic force approximate model of high-speed solenoid valve
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高高速电磁阀动态响应速度,采用近似模型方法,以建立电磁阀多物理场零维近似耦合模型,实现其性能高效预测及优化。首先创建了柴油机电控单体泵高速电磁阀电磁力有限元计算模型,并通过与试验对比验证了模型的精度。结合面中心复合设计、嵌套中心复合设计、最优拉丁超立方设计与二次多项式响应面模型、Kriging模型、径向基函数模型,构建了18组电磁力近似模型。分析了不同样本点集大小、试验设计方法及近似方法对近似模型精度的影响。得出近似模型的精度随着样本点集的增大并非呈现单调递增的关系;而最优拉丁超立方试验设计与Kriging模型、径向基函数模型具有良好的适应性。构建高速电磁阀工作气隙、驱动电流、线圈匝数、副磁极半径、衔铁厚度、衔铁半径等关键参数的电磁力近似模型最佳方案是最优拉丁方试验设计与Kriging模型的组合,样本点集大小为二次多项式响应面模型所需最少样本点数的1.5倍,模型复相关系数、平均绝对误差、均方根误差值分别为0.97、0.06、0.09。该研究为高速电磁阀多物理场零维近似耦合模型的建立及其优化提供了参考。

    Abstract:

    High-speed solenoid valve (HSV) is the key component of electronic control fuel injection system for diesel engine. Improving the dynamic response speed of HSV will be able to achieve higher injection precision and more flexible fuel injection law, thus reducing gas emissions of diesel engine and improving its fuel economy. However, HSV is the complex coupling system of electric field, magnetic field, mechanical movement and flow field, and the interactions of multiple parameters exist between the fields for HSV. To improve the dynamic response speed of HSV is a complex optimization problem of multiple physical field and multiple parameters. A zero-dimensional approximation coupling model of HSV can be developed instead of the CAE (computer aided education) models or physical experiments, which conduces to achieve the efficient prediction and global optimization of performances. So the approximation model method was employed in this paper. First, the structure and principle of HSV for electronic unit pump of diesel engine were presented. Second, the three-dimensional (3D) finite element model of HSV was developed to calculate the electromagnetic force, and its accuracy was verified by means of the comparison with experimental data. Third, 3 major methods of experimental design, i.e. central composite faced-centered design (CCF), central composite inscribed design (CCI) and optimal latin hypercube design (OLH), and 3 typical approximation methods, i.e. quadratic polynomial response surface model (RSM), Kriging model (KR) and radial basis function model (RBF) were introduced. Fourth, 6 key parameters including 2 field coupling parameters, i.e. working air gap and drive current, and 4 structure parameters, i.e. coil turns, side pole radius, thickness and radius of armature were determined for establishing the approximate models. Next, 6 groups of sample points were designed, whose response values of electromagnetic forces were obtained by the 3D finite element model of HSV. Four of the groups were designed with different sizes by the OLH, and the other 2 groups were designed by the CCF and CCI. Then, 18 groups of electromagnetic force approximation models were developed by combining the 6 groups of experimental design with the 3 typical approximation methods introduced. To compare the accuracy of approximation models, 3 kinds of evaluation indices were introduced. They were multiple correlation coefficient, average absolute error and root mean square error respectively. In the end, the effects of different sample point sizes, experimental design methods and approximate methods on the accuracy of electromagnetic force approximation models were analyzed in detail. It is concluded that the accuracy of approximate model doesn't increase monotonically with the increase of the set size of sample points, and too many sample points maybe leads to the decrease of the accuracy of approximate model; the OLH has good adaptability with the KR and RBF, and can be given priority for developing approximation models. In addition, the best solution for establishing electromagnetic force approximation model of HSV is the combination of the KR and OLH, whose size of sample points is 1.5 times of the minimum sample points required by the quadratic polynomial response surface model. Its multiple correlation coefficient, average absolute error and root mean square error are 0.97, 0.06 and 0.09 respectively. It provides a theoretical guidance for the establishment of the zero-dimensional approximation coupling model and the optimization of HSV.

    参考文献
    相似文献
    引证文献
引用本文

刘鹏,范立云,白云,马修真,宋恩哲.高速电磁阀电磁力近似模型的构建与分析[J].农业工程学报,2015,31(16):96-101. DOI:10.11975/j. issn.1002-6819.2015.16.014

Liu Peng, Fan Liyun, Bai Yun, Ma Xiuzhen, Song Enzhe. Modeling and analysis of electromagnetic force approximate model of high-speed solenoid valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(16):96-101. DOI:10.11975/j. issn.1002-6819.2015.16.014

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-28
  • 最后修改日期:2015-07-15
  • 录用日期:
  • 在线发布日期: 2015-08-15
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司