带阶梯型谐振腔的Hartmann低频超声雾化喷嘴设计及试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51275214);江苏自然科学基金资助项目(BK2011470);江苏高校优势学科建设工程资助项目(苏财教(2011)8号)


Design and test of low-frequency Hartmann atomization nozzle with stepped resonance tube
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前雾化栽培领域所用喷嘴无法兼具雾滴粒径细小及大雾化量特性的问题,该文设计了一种带阶梯型谐振腔的流体动力式Hartmann低频超声雾化喷嘴,为了使喷嘴喷雾方向可控,对雾化区域进行了流场主动控制,即在喷雾出口区域设置了圆锥罩,通过数值模拟研究了小尺寸阶梯型谐振腔的振动特性,对其雾化效果进行了试验对比。结果表明:在相同参数条件下,当阶梯型谐振腔第二级阶梯孔与第一级阶梯孔深度比超过2时,其谐振频率达到了传统圆柱型谐振腔谐振频率的1.6~1.7倍;圆锥罩的加入使得腔内流体压力振幅变大,初段起振特性更优;阶梯型谐振腔两级阶梯孔孔径比是影响阶梯腔谐振特性的重要因素,阶梯孔孔径比的改变会使阶梯型谐振腔的谐振模式由"回流模式"转变为"尖声模式"或使谐振现象消失;带阶梯型腔体的低频超声雾化喷嘴比带普通圆柱型腔体喷嘴的雾化效果更好,在0.1 MPa~ 0.5 MPa的进气压力下,前者比后者雾滴粒径小2~6 ?m;阶梯型谐振腔式超声雾化喷嘴在加装圆锥罩之后,低压时的雾滴粒径随供气压力变化更大,而在高压时,其雾化效果与没有加装圆锥罩的阶梯型谐振腔式超声雾化喷嘴相比基本一致;索太尔平均粒径SMD(Sauter mean diameter)随Laval管出口与谐振腔之间的距离的变大呈现出先变小后变大的趋势,SMD的变化趋势与腔内声压级SPL的变化趋势基本一致。雾化量为2 L/h下时,阶梯腔式超声雾化喷嘴的最小雾滴粒径为42 μm。该研究可为阶梯腔式超声雾化喷嘴在雾化栽培领域的应用提供参考。

    Abstract:

    Abstract: The droplet quality of hydrodynamic ultrasonic atomization nozzle is better than the ordinary two-phase nozzle. And the atomization amount is larger than the piezoelectric atomization nozzle. High-quality droplet and high atomization amount are both required in the field of aeroponics. Therefore, it is necessary to develop a hydrodynamic ultrasonic atomizing nozzle suitable for large-scale aeroponics. Based on the basic principle of the Hartmann resonator, in this study, the mechanism of ultrasonic vibration of resonant cavity and the atomization mechanism of resonant cavity supersonic nozzle were analyzed theoretically. The Hartmann low-frequency ultrasonic atomization nozzle with stepped resonator and adjustable structural parameters was designed, including the Laval tube, the stepped tube, and conical shield. The influence of the structural parameters on the resonant state of the resonator was studied by means of CFD software transient numerical simulation. In order to make the spraying angle controllable, active flow control was used in the atomizing area, namely, adding a conical shield at the exit of the nozzle. The oscillation characteristics of the stepped resonance tube were further studied parametrically by numerical simulation methods. Numerical simulation of three kinds of atomizing nozzles including cylindrical tube, stepped tube and stepped tube with conical shield was carried out. The parameters which were studied were as follows: the distance between Laval outlet and inlet of stepped tube, depth ratio of the second stepped hole and the first stepped hole, conical cover, diameter ratio of the second stepped hole and the first stepped hole. Numerical simulation results showed that: (1) If the depth ratio of the stepped tube exceeded 2, its resonance frequency reached 1.6 to 1.7 times of the cylindrical one under the same working parameters; (2) The conical shield can make the pressure oscillation amplitude in the cavity bigger; and (3) The diameter ratio of the stepped resonator had a great influence on the resonant state of the resonator. The variation of diameter ratio of the stepped resonator changed the resonant mode of the stepped resonator from one mode to another. It also can make the resonance phenomenon disappear. As such, the key dimensions of the stepped resonator were determined accordingly. And an optimal diameter ratio was selected for trial production. And the optimal distance between Laval tube outlet and the resonant inlet 5.5 mm were selected as the initial structural parameter values of the spray test. The droplet size of three kinds of atomizing nozzles was tested and the test of droplet size was carried out with distance between Laval tube outlet and the resonant inlet, depth ratio of the second stepped hole and the first stepped hole, and other factors as variables. Moreover, its atomization properties were tested contrastively under different conditions. Research results showed that: (1) Start-up properties of oscillation can be optimized due to the main frequency unaffected by the conical shield;(2) The diameter ratio of stepped resonance tube was a quite sensitive parameter influencing the resonance state. The variation of diameter ratio can make the resonance mode change from 'jet regurgitant mode' to 'jet scream mode' or make the oscillation disappear; (3) Atomization properties of Hartmann atomization nozzle with a stepped resonance tube was better than those of Hartmann atomization nozzle with a cylindrical one; (4) If the air supply pressure was low, the droplet size was more sensitive with the pressure after adding a conical shield, while the gap of the average droplet size between the nozzle with stepped tube and that with traditional tube was not obvious under the condition of high air supply pressure. The distance between the Laval tube exit and the resonance tube was another sensitive parameter influencing the droplet size. An optimal distance, where the minimum droplet size can be acquired, was 6.5 mm. The droplet diameter increased gradually no matter the distance was bigger or smaller than the optimal distance. However, the droplet diameter varied slightly with the distance near the optimal point.

    参考文献
    相似文献
    引证文献
引用本文

高建民,马俊龙.带阶梯型谐振腔的Hartmann低频超声雾化喷嘴设计及试验[J].农业工程学报,2017,33(12):66-73. DOI:10.11975/j. issn.1002-6819.2017.12.009

Gao Jianmin, Ma Junlong. Design and test of low-frequency Hartmann atomization nozzle with stepped resonance tube[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017,33(12):66-73. DOI:10.11975/j. issn.1002-6819.2017.12.009

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-10-12
  • 最后修改日期:2017-06-05
  • 录用日期:
  • 在线发布日期: 2017-07-01
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司