基于改进遗传算法的温湿度模糊神经网络控制器
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S625.5+1

基金项目:

国家863计划(2001AA247022);北京市工厂化高效农业项目(H020720030530);北京市农业技术试验示范项目(20012014)


New temperature and humidity fuzzy neural network controllerbased on improved genetic algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了创造适合作物生长的环境,针对温室系统的特点,该文提出了一种基于改进遗传算法的模糊神经网络控制器,利用改进遗传算法训练模糊神经网络模型,采用此模糊神经网络控制器控制温室系统,由数值实验可以看到采用此控制器的温室系统具有响应速度快、过程平稳、编程简单的特点。

    Abstract:

    The greenhouse is a complex system. There is strong coupling relationship among its environmental factors in side greenhouse. So it's difficult to get satisfying effect by using conventional control methods. Based on the characteristics of the greenhouse, a new fuzzy neural network controller (FNNC) was proposed to create a proper condition for crop growth. The improved genetic algorithm was used to train the architecture of the fuzzy neural network controller, which was adopted in the greenhouse. Numerical experiment results showed that the greenhouse equipped with this fuzzy neural network controller had such features as responding quickly, smooth transition and programming simply.

    参考文献
    相似文献
    引证文献
引用本文

李秀梅,赵春江,乔晓军,刘华毅.基于改进遗传算法的温湿度模糊神经网络控制器[J].农业工程学报,2004,20(1):259-262.

Li Xiumei, Zhao Chunjiang, Qiao Xiaojun, Liu Huayi. New temperature and humidity fuzzy neural network controllerbased on improved genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2004,20(1):259-262.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-06-06
  • 最后修改日期:2003-09-05
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司