基于杂交小波变换的农产品图像去噪算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(30971690);863项目-密植型果园仿形定向施药技术研究与装备创制(2008AA100903-7);陕西省攻关项目-多功能旱作果园自动化作业机械技术研究(14210110)


Agricultural image de-noising algorithm based on hybrid wavelet transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有图像去噪方法去噪效果不明显、易丢失细节特征等缺陷,提出了一种基于杂交小波变换的农产品图像去噪算法。该方法综合了小波去噪能较好保留图像细节特征和Wiener滤波器可得到最优解的优势,分别以经小波变换、Wiener滤波处理后的图像作为杂交小波变换初始种群的父本和母本,并以最大类间方差作为适应度函数来评价个体的优劣,通过杂交和变异操作实现基因重组,提取出小波变换与Wiener滤波在图像去噪中的优势基因;经过有限次的杂交代数最终得到兼有父本和母本优势的子代图像。试验中用红枣和小麦图像对算法进行测试,去噪后红枣和小麦的图像峰值信噪比(PSNR)分别为178.44和183.24,好于邻域平均法(176.76和175.16)、中值滤波法(174.79和173.13)、维纳滤波(172.75和173.48)和高斯滤波(167.50和165.60)等常规去噪方法,并且在视觉效果上同时兼有噪声低和边缘清晰等优点,表明该方法用于农产品图像去噪是有效的、可行的。

    Abstract:

    The current image de-noising methods cannot remove the noise effectively, and they have the disadvantage of losing minutiae easily. A new de-noising method based on Hybrid Wavelet Transform was proposed in this study. Wavelet de-noising has the advantage of keeping the image’s detail information, and Wiener Filter can obtain an optimal solution. This algorithm synthesized the advantages of Wavelet de-noising and Wiener Filter. Firstly, the image de-noised by Wavelet was used as male parent of the Hybrid Wavelet Transform’s initial population, and image de-noised by Wiener Filter as female parent. Then, the individuals with fitness function of maximum between-cluster variance were evaluated. Through the hybrid and mutate operation, the gene recombination was realized, and then the superior gene of the two images de-noised was extracted by Wavelet and Wiener Filter. Finally, with the finite order hereditary algebra, an offspring image was obtained which has both advantages of male parent and female parent. The performance of this algorithm was tested by the red jujube images and wheat images. The results showed that images of red jujube and wheat de-noised by the proposed method had a higher PSNR (178.44 and 183.24) than those processed by conventional methods such as neighborhood average (176.76 and 175.16), median filter (174.79 and 173.13), Wiener filter (172.75 and 173.48) and Gauss filter (167.50 and 165.60) etc. The experimental results showed that the Hybrid Wavelet Transform de-noising method used on agricultural image had the advantage of high signal-to-noise ratio, and good visual effect. Therefore, the method proposed is effective and practicable.

    参考文献
    相似文献
    引证文献
引用本文

杨福增,田艳娜,杨亮亮,何金伊.基于杂交小波变换的农产品图像去噪算法[J].农业工程学报,2011,27(3):172-178.

Yang Fuzeng, Tian Yanna, Yang Liangliang, He Jinyi. Agricultural image de-noising algorithm based on hybrid wavelet transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2011,27(3):172-178.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-05-23
  • 最后修改日期:2010-10-27
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司