Abstract:Abstract: To solve problems occurring in grain storage such as high-energy consumption, uncontrollable insect pests, and serious pesticide pollution, a heated, pipe-based grain storehouse utilizing natural cold resources was developed. The heated pipe-based grain storehouse is composed of a storehouse, heat pipe, and temperature monitoring system. The working substance in the evaporation section of the heat pipe absorbs heat from the grain, gasifies it, and then releases the heat via heat an exchange with cold air in the condensation section of the heat pipe. The liquefied working substance then flows back to the evaporation section via gravity. An automatic cycle is accomplished in this manner. The natural coldness resource is continuously transferred and stored in the grain, and low temperature grain storage is achieved. In this study, from December 2011 to November 2012, the distribution and variation of the temperature of grain storehouses were measured and analyzed. The insect pest inhibition effect was also studied. Results showed that the heat pipe was in operation for 91 day, in which the temperature was2.2℃ lower than that of traditional grain storehouses, and the average wheat temperature of the heat pipe-based grain storehouse decreased to 0℃ within 19 days, reaching the minimum of -3.17℃. In this period, its heat exchange was 50.95MJ and the cooling rate was 0.28℃/d, which were respectively 31.62% and 47.37% higher than that of conventional grain storehouses. Natural cold resources more rapidly transferred into the heat pipe-based grain storehouse. The average wheat temperature of the heat pipe-based grain storehouse had been below 15℃ before May 2012, in accordance with the widely accepted temperature requirement for low temperature grain storage. The occurrence of insect pests in the heat pipe-based storehouse was delayed and the insect pest density was lowered. Thus, the insect control effect was significant. In addition, no moisture condensation or mildew occurred during the experimental period. In summer, the average wheat temperature of heat pipe-based grain storehouses was 2℃ lower than that of traditional storehouses. Heat pipe technology proved to be applicable and efficient in grain storage in temperate and cold regions. With low energy consumption, low cost, high cooling rate, and good insect pest control effect, the storehouse could remarkably maintain grain quality in an environmentally friendly way. Considering the high surface area of grain storehouses in this research, the cooling effect and reserved cold resources could be greater when put into practice in large grain storehouses. This research provides the theoretical foundation and technical support for the practical application of heat pipe technology in large grain storehouses.