基于机器视觉的多个玉米籽粒胚部特征检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北农业大学理工基金项目(LG20110601)


Detection of multi-corn kernel embryos characteristic using machine vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了利用机器视觉进行多个玉米种子品种的自动识别,该文提出了一种针对多个玉米籽粒进行胚部检测的方法。该方法基于阈值分割和形态学,在RGB空间,采用自动屏蔽0值像素的大津法(Otsu法),根据B分量值对多粒玉米籽粒扫描图像进行分割,并采用改进的开闭运算对分割后的图像进行修整,最终得到多个玉米籽粒胚部区域。以4个黄玉米品种各45个籽粒为实验对象,以此方法进行胚部检测,为了验证所得胚部区域有效,提取胚部区域面积、周长分别与手工测量的面积、周长进行线性回归分析,R2的均值分别达到0.9834、0.9578;进一步提取所得胚部区域的形状参数,进行聚类识别,不同品种间的差距值反映了不同品种胚部视觉效果上的差异大小,4个品种中1种识别率为97.8%,其余3种均为100%;多个玉米胚部检测较每个籽粒单独处理的效率提高了29.59%。试验结果表明本文提出的多个玉米籽粒胚部检测方法可行。此研究结果为进一步研究玉米籽粒的胚部特征提供了有利条件,也为实现玉米品种的快速准确分类提供了参考。

    Abstract:

    Abstract: This paper presents a method of multi-corn kernel embryos detection based on threshold segmentation and morphology. Corn kernel varieties identification is of great significance in the fields of agricultural production and crop breeding. In the seed market of China, the identification of corn varieties mainly depends on manual experience and measurement. In order to automatically, quickly, non-destructively identify kernel varieties, the study of automatic identification in a real time using machine vision technology is very active. Determination of the characteristics of the corn kernel is the first and the most important step of automatic identification. The corn kernel embryo is the most important part of the corn kernel. To analyze the characteristics of an embryo, an embryo must be separated from the corn kernel. The embryo detection speed and precision can influence the speed and precision of identification. In the paper, an algorithm based on threshold segmentation and morphology was proposed to segment embryos of multi-corn kernel at the same time, as a result of the deeper study of the identification. This algorithm was used to obtain multi-corn kernel embryos from a 2D digital image obtained by the scanner. It mainly included two parts, i.e. a maximum between-cluster deviation method (Otsu method) excluding pixels with zero value automatically, and improved open-close operation from morphology. Its process was as follow. In RGB color space, the multi-corn kernel embryos in the same image were segmented out at the same time by Otsu excluding pixels with zero value method based on the value of B(blue), in which the zero value pixels were auto-removed form histogram during processing. However, after segmentation, some corn kernel embryos showed a problem of lacking- segmentation or over-segmentation. To solve the problem, the improved open-close operation was used to repair the embryos. To validate the algorithm, four varieties of yellow corn which were common used in China were selected as study objects for our experiments. 45 samples were selected form each variety respectively. Then the total number of samples was 180. Every variety's digital image was obtained by scanner. Four images were obtained. They were processed respectively with the above-mentioned algorithm. The embryos from each different variety were detected. To validate the effectiveness of the detected embryos, two methods were used. First, area and perimeter of each embryo were measured respectively by machine computer and manual measurement. Linear regression analysis was done between the auto measured values and the manual values. The mean values of R2 were 0.9834 and 0.9578 respectively. Second, 6 shape-parameters which are perimeter, round degrees, ellipse strong and weak points axis ratio, rectangle degrees, and centrifugal rate were extracted from the embryo regions of 180 samples. Analyzing the data by K-means clustering method, the final clustering distances between different varieties reflected the difference in the visual of the embryos of the different varieties., and the checked out rate of the 4 varieties were 97.8%, 100%, 100%, and 100%. The efficiency of multi-corn kernel embryos detection was improved by 29.59% over single-corn kernel embryo detection. According to the experimental results, two conclusions were as follow: First, the auto-detected embryo region and the embryo region by manual experience and measurement were basically the same. The auto-detected embryo regions were effective. Second, the six parameters extracted from an embryo could be used to characterize the shape of the embryo. The results of this study provide favorable conditions for further study of the embryo characteristics of corn kernels, and provide a reference for the rapid and accurate identification of corn varieties.

    参考文献
    相似文献
    引证文献
引用本文

程 洪,史智兴,尹辉娟,冯 娟,李亚南.基于机器视觉的多个玉米籽粒胚部特征检测[J].农业工程学报,2013,29(19):145-151. DOI:10.3969/j. issn.1002-6819.2013.19.018

Cheng Hong, Shi Zhixing, Yin Huijuan, Feng Juan, Li Yanan. Detection of multi-corn kernel embryos characteristic using machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2013,29(19):145-151. DOI:10.3969/j. issn.1002-6819.2013.19.018

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-08-23
  • 最后修改日期:2013-08-10
  • 录用日期:
  • 在线发布日期: 2013-09-12
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司