Abstract:Abstract: Clarity of juice is an important factor regarding the quality of the juice as it fetches consumer attention for the product in the market. Clarification is a key step in the processing of fruit juice and is most often achieved through micro filtration, enzymatic treatment, or by using common clarifying aids like chitosan, gelatin, bentonite, silica sol, polyvinyl pyrrolidine, or a combination of these compounds. Chitosan (poly-b(1-4)N-acetyl-glucosamine) being poly-cationic in nature, nontoxic, and biodegradable, has been found to be an effective coagulating agent in aiding the removing pectin and other carbohydrates which are present in the juice. The clarification of ponkan juice by means of chitosan was studied in this paper. In order to obtain the optimal reaction conditions of clarification of ponkan juice by commercially inexpensive chitosan, the process conditions of clarification with chitosan on ponkan juice were optimized by a Box-Behnken center-united experiment design. Taking juice clarification as a dependent variable, the models were obtained by using a response surface analysis of the three factors of chitosan concentration, chitosan treated temperature, and the chitosan treated time based on a single factor experiments. The results indicated that the interaction effect of chitosan concentration and chitosan treated temperature, chitosan concentration, and chitosan treated time on the juice clarification achieved a very significant level. The influencing factors had a complicated relationship with each other. Among these factors, chitosan treated time、chitosan concentration, and the chitosan treated temperature ranked in order. The results from the Box-Behnken center-united experiment showed that the optimum technological condition for clarification of ponkan juice was adding 0.8 g/L chitosan at 59°C for 71 min and its clarification of the ponkan juice was up to 97.8%. The experiment indicated that there was a good fit between the predicted and the experimental values. The mathematical model was also very accurate. Comparing with the original ponkan juice, the contents of soluble solids, vitamin C, and titratable acidity were almost the same after clarification. Removing the pectin, total phenolics, and proteins improved the non-biological stability of the ponkan juice, because of the phenomenon of flocculating with chitosan. According to the non-biological stability tests, the results of stability tests of protein, potassium hydrogen tartaric acid, iron, copper, and oxidation showed negative, and indicated that the non-biological stability of ponkan juice were strengthened by chitosan to a certain extent.This article could provide a theoretical basis for clarifying ponkan juice in manufacture. According to the optimal technological condition of the experiment, clarification of 1 L juice only costs 0.15 yuan. The popularization and application of this technology will bring great economic benefits for the industrial production of juice.