基于时间相似数据的支持向量机水质溶解氧在线预测
作者:
基金项目:

国家科技支撑计划项目(2011BAD21B01);国家基金项目(61100115);广东省省部产学研结合项目(2012B090500008);广东省科技计划项目(2012A020200008,2012B091100431);广东省自然基金项目(S2013010014629,S2012010008261)


Online prediction for dissolved oxygen of water quality based on support vector machine with time series similar data
Author:
  • Liu Shuangyin

    Liu Shuangyin

    1. College of Information, Guangdong Ocean University, Zhanjiang 524025, China; 2. Key Laboratory of Agricultural Information Acquisition Technology《Beijing》, Ministry of Agriculture, Beijing 100083, China; 3. Beijing ERC for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China;
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Xu Longqin

    Xu Longqin

    1. College of Information, Guangdong Ocean University, Zhanjiang 524025, China;
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Li Daoliang

    Li Daoliang

    2. Key Laboratory of Agricultural Information Acquisition Technology《Beijing》, Ministry of Agriculture, Beijing 100083, China; 3. Beijing ERC for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China; 4. Beijing ERC for Advanced Sensor Technology in Agriculture, China Agricultural University, Beijing 100083, China;
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zeng Lihua

    Zeng Lihua

    3. Beijing ERC for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China; 4. Beijing ERC for Advanced Sensor Technology in Agriculture, China Agricultural University, Beijing 100083, China; 5. College of Mechanical and Electrical Engineering, Agricultural University of Hebei, Baoding 071001, China;
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时间弯曲距离(feature points segmented time warping distance,FPSTWD)算法对在线采集的时间序列数据进行分段与相似度计算,以缩减规模的子序列数据集对LSSVR模型进行快速训练优化,实现了多个LSSVR子模型在线建模,将预测数据序列与LSSVR子模型的相似度匹配,自适应地选取最佳的子模型作为在线预测模型。应用该模型对集约化河蟹福利养殖水质参数溶解氧浓度进行在线预测,模型评价指标中最大相对误差、平均绝对百分比误差、相对均方根误差和运行时间分别为4.76%、8.18%、5.23%、8.32 s。研究结果表明,与其他预测方法相比,该模型具有较好的综合预测性能,能够满足河蟹福利养殖水质在线预测的实际需求,并为集约化水产养殖水质精准调控提供研究基础。

    Abstract:

    Abstract: Water quality regulation is one of the most important tasks in intensive aquaculture management. Grasping the trend of the dissolved oxygen concentration timely and accurately and regulating water quality dynamics are the key for healthy growth in the non-stress environment of aquatic products in order to solve the low prediction accuracy, inferior capability of dynamic learning, online updates, and high computational complexity of the traditional online forecasting methods for water quality in intensive aquaculture. The online prediction model of dissolved oxygen content in intensive aquaculture eriocheir sinensis cultures was introduced, which was based on the least squares support vector machine (LSSVR) with time series similar data. The time series data collected online was segmented clustered using a feature points segmented time warping distance algorithm. The subsequence data sets reduced the size and optimized the LSSVR models training process, achieving multiple LSSVR models online modeling, and segmented memory and storage. According to the forecast data sequence and LSSVR sub-model similarity, it adaptively chose the optimal sub-model to get the predicted output. The online model was used for the prediction of the dissolved oxygen changing in high-density eriocheir sinensis culture ponds during July 21, 2012 to July 31, 2012 in Yixing City, Jiangsu Province, China. Experimental results showed that the proposed prediction model of FPSTWD-LSSVR had a better prediction effect than the FPSTWD-LSSVR, ILSSVR, SONB-LSSVR, or off-line LSSVR algorithms. Under the same experimental conditions, the relative mean absolute percentage error (MAPE), maximum relative error (Emax), relative root mean square error (RRMSE), and the running time differences between the FPSTWD-LSSVR and ILSSVR models were 47.93%, 43.47%%, 30.91%, and 5.16 s in the test period respectively. The relative MAPE, Emax, RRMSE, and the running time differences between the FPSTWD-LSSVR and SONB-LSSVR models were 39.99%, 33.43%, 22.40%, and 2.74 s in the test period respectively. It is obvious that FPSTWD-LSSVR is more accurate than ILSSVR and SONB-LSSVR. The relative MAPE, Emax, RRMSE and the running time differences between the FPSTWD-LSSVR and off-line LSSVR models were 16.14%, 9.03%, 8.41%, and 11.36 s in the test period respectively. The lower sample number, which cannot cover all types of characteristic in time series data, probably caused the prediction performance of FPSTWD-LSSVR to be slightly lower than the off-line LSSVR model. Overall, the online prediction model has a low computational complexity, fast convergence rate, high online prediction accuracy, and strong generalization ability. It is an effective online prediction method for the dissolved oxygen controlling in the high density eriocheir sinensis culture, and provides the basis of decisions for controlling water quality, setting the aquaculture water plan, and reducing the risk of cultivation.

    参考文献
    [1] 刘双印,徐龙琴,李道亮,等. 基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型[J]. 农业工程学报,2012,28(23):167-175.Liu Shuangyin, Xu Longqin, Li Daoliang, et al. Dissolved oxygen prediction model of eriocheir sinensis culture based on least squares support vector regression optimized by ant colony algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(23): 167-175. (in Chinese with English abstract)
    [2] 王军,彭喜元,彭宇. 一种新型复杂时间序列实时预测模型研究[J]. 电子学报,2006,12A:2391-2394.Wang Jun, Peng Xiyuan, Peng Yu. A novel real time predictor for complex time series[J]. ACTA Electronica Sinica, 2006, (12A): 2391-2394. (in Chinese with English abstract)
    [3] Vairappan C, Tamura H, Gao S C, et al. Batch type local search-based adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-series prediction[J]. Neurocomputing, 2009, 72(7/8/9): 1870-1877.
    [4] Chen Y M, Lin C T. Dynamic parameter optimization of evolutionary computation for on-line prediction of time series with changing dynamics[J]. Applied Soft Computing, 2007, 7(4): 1170-1176.
    [5] Wang W J, Men C Q, Lu W Z. Online prediction model based on support vector machine[J]. Neurocomputing, 2008, 71(4/5/6): 550-558.
    [6] Wen Y, Li X O. On-line fuzzy modeling via clustering and support vector machines[J]. Information Sciences, 2008, 178(22): 4264-4279.
    [7] Gu B, Wang J D, Yu Y C, et al. Accurate on-line v-support vector learning[J]. Neural Networks, 2012, 27: 51-59.
    [8] 张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):399-406.Zhang Haoran, Wang Xiaodong. Incremental and online learning algorithm for regression least squares support vector machine[J]. Chinese Journal of Computers, 2006, 29(3): 399-406. (in Chinese with English abstract)
    [9] Zhao Y P, Sun J G, Du Z H, et al. Online independent reduced least squares support vector regression[J]. Information Sciences, 2012, 201: 37-52.
    [10] Zhang W P, Niu P F, Li G Q, et al. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J]. Knowledge-Based Systems, 2013, 39: 34-44.
    [11] 张淑宁,王福利,何大阔,等. 在线鲁棒最小二乘支持向量机回归建模[J]. 控制理论与应用,2011,28(11):1601-1606.Zhang Shuning, Wang Fuli, He Dakuo, et al. Modeling method of online robust least-squares-support-vector regression[J]. Control Theory and Applications, 2011, 28(11): 1601-1606. (in Chinese with English abstract)
    [12] 周欣然,滕召胜,蒋星军. 稀疏在线无偏置最小二乘支持向量机的预测控制[J]. 电子测量与仪器学报,2011,25(4):331-337.Zhou Xinran, Teng Zhaosheng, Jiang Xingjun. Predictive control using sparse online non-bias LSSVM[J]. Journal of Electronic Measurement and Instrument, 2011, 25(4): 331-337. (in Chinese with English abstract)
    [13] 陈磊. 遗传最小二乘支持向量机法预测时用水量[J]. 浙江大学学报:工学版,2011,45(6):1100-1103.Chen Lei. Genetic least squares support vector machine approach to hourly water consumption prediction[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(6): 1100-1103. (in Chinese with English abstract)
    [14] Liu Shuangyin, Xu Longqin, Li Daoliang, et al. Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization[J]. Computers and Electronics in Agriculture, 2013, 95: 82-91.
    [15] 肖辉,胡运发. 基于分段时间弯曲距离的时间序列挖掘[J]. 计算机研究与发展,2005,42(1):72-78.Xiao Hui, Hu Yunfa. Data mining based on segmented time war ping distance in time series database[J]. Journal of Computer Research and Development, 2005, 42(1): 72-78. (in Chinese with English abstract)
    [16] 程文聪,邹鹏,贾焰. 多维时序数据中的相似子序列搜索研究[J]. 计算机研究与发展,2010,47(3):416-425.Chen Wencong, Zou Peng, Jia Yan. Similar sub-sequences search over multi-dimensional time series data[J]. Journal of Computer Research and Development, 2010, 47(3): 416-425. (in Chinese with English abstract)
    [17] Park S, Wesley W C, Yoon J, et al. Similarity search of time-wraped subsequences via a suffix tree[J]. Information Systems, 2003, 28(7): 867-883.
    [18] Berndt D J, Clifford J. Using dynamic time warping to find patterns in time series[C]// Proc of the AAAI-94 Workshop on Knowledge Discovery in Databases. Washington: AAAI Presss, 1994: 359-370.
    [19] 高中灵,徐新刚,王纪华,等. 基于时间序列NDVI相似性分析的棉花估产[J]. 农业工程学报,2012,28(2):148-153.Gao Zhongling, Xu Xingang, Wang Jihua, et al. Cotton yield estimation based on similarity analysis of time-series NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 148-153. (in Chinese with English abstract)
    [20] 金立兵,金伟良,王海龙,等.多重环境时间相似理论及其应用[J]. 浙江大学学报:工学版,2010,44(4):789-797.Jin Libing, Jin Weiliang, Wang Hailong, et al. Multi-environmental time similarity theory and its application[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(4): 789-797. (in Chinese with English abstract)
    [21] 万安平,陈坚红,盛德仁,等. 基于多重环境时间相似理论的燃气轮机热通道部件剩余寿命预测方法[J]. 中国电机工程学报,2013,33(5):95-100.Wan Anping, Chen Jianhong, Sheng Deren, et al. Residual life prediction method for gas turbine HGP component based on multi-environmental time similarity theory[J]. Proceedings of the CSEE, 2013, 33(5): 95-100. (in Chinese with English abstract)
    [22] 杨锡运,孙宝君,张新房,等. 基于相似数据的支持向量机短期风速预测仿真研究[J]. 中国电机工程学报,2012,33(5):35-40.Yang Xiyun, Sun Baojun, Zhang Xinfang, et al. Residuallife prediction method for gas turbine HGP component based on multi-environmental time similarity theory[J]. Proceedings of the CSEE, 2012, 33(5): 35-40. (in Chinese with English abstract)
    [23] 刘晶. 基于相似日和支持向量机的短期负荷预测研究[D]. 广州:华南理工大学,2010.Liu Jing. Short-term Power Load Forecasting Based on Similar Day and Support Vector Machine[D]. Guangzhou: South China University of Technology, 2010. (in Chinese with English abstract)
    [24] 刘大同,彭宇,彭喜元,等. 一种分段在线支持向量回归算法[J]. 仪器仪表学报,2010,31(8):1732-1737.Liu Datong, Peng Yu, Peng Xiyuan, et al. Segmental online support vector regression algorithm[J]. Chinese Journal of Scientific Instrument, 2010, 31(8): 1732-1737. (in Chinese with English abstract)
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘双印,徐龙琴,李道亮,曾立华.基于时间相似数据的支持向量机水质溶解氧在线预测[J].农业工程学报,2014,30(3):155-162. DOI:10.3969/j. issn.1002-6819.2014.03.021

Liu Shuangyin, Xu Longqin, Li Daoliang, Zeng Lihua. Online prediction for dissolved oxygen of water quality based on support vector machine with time series similar data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2014,30(3):155-162. DOI:10.3969/j. issn.1002-6819.2014.03.021

复制
分享
文章指标
  • 点击次数:2253
  • 下载次数: 1910
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-07-17
  • 最后修改日期:2013-12-06
  • 在线发布日期: 2014-01-13
文章二维码
您是第39813666位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!