Abstract:Abstract: Globally, biomass resources regarded as a green renewable energy has the potential of being more important in the future, which attract worldwide attention regarding their renewable nature, carbon dioxide-neutral characteristics, and world-wide availability. Consequently, many countries are putting great emphasis on the exploration of bio-energy, and the techniques used are various such as combustion, gasification, pyrolysis, hydrogen production, and so on. As a by-product generated from the processing of corn, the production of corncob (CC) is rather abundant, and reaches up to 3.87 million tons per year in China. The biomass gasification industries make use of CC residues as raw materials for producing biomass fuel gas. However, the gasification generates tons of corncob ash (CCA) everyday, which is requiring daily disposal properly. Herein this study is focused on the preliminary properties of waste CCA to analyze how it could be transformed into eco-friendly value added products. For a broad awareness of properties and possible utilizations of these waste CCA, some techniques were used such as laser particle size analyzer (LPSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX). The results showed that the granularity distribution of CCA powders was very homogeneous, and the particle size analysis showed a mean diameter of 12.96 μm and a medium diameter of 10.23 μm. The elemental composition revealed that potassium and silicon were the most abundant elements. Being rich in potassium, calcium, sulfates and chlorine made CCA suitable for using as soil amendment and the high content of combined SiO2 and Al2O3 made it possible to be used a pozzolan in blended cement concrete. The XRD spectrogram indicated the presence of several crystalline phases in CCA. Many crystalline phase minerals containing potassium in the ash present in forms of KHCO3, KAlSiO4, KAlSi2O6, KCl and K2SO4. The SEM images revealed the ash is highly agglomerated and with irregular shapes. Those shapes of ash particles were multiple and these dendritic reunion ashes had rich interspace, which easily leaded to adsorption of small particles step-by-step. A large number of weak bonding flocs adhered to the particle surface. The fracture surface of these particles was porous. Being rich in potassium was found on the surface of molten particles, which was mainly in form of KCl. The EDX data telled us that the surface of molten particles was covered with KCl. And the water soluble salt concentrate was particularly rich in KCl, which was of interest in terms of element extraction. The thermal analysis revealed the decomposition of CCA had a stepwise mechanism, which implied a total weight loss of 17.13% under nitrogen, that of 19.86% under dry air and that of 23.12% under 40% O2 in N2 when heating to 1 200. This illustrated that the mass loss increases with the rise of oxygen concentration. An endothermic peak near 620℃ in nitrogen was due to melting of KCl, while the exothermic peak at around 630℃ in the aerobic environment was caused by ignition of unburned carbon and degradation of residual organic matters. The unburnt carbon in CCA has a potential to be separated and used for activated carbon or other applications. This paper provides the baseline of future work on the possible utility of the waste CCA from biomass gasification stations.