基于Bayes决策的甘蔗种芽完好性检测与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西自然科学基金资助项目(2014GXNSFAA118344)


Detection and experiment of sugarcane buds integrity based on Bayes decision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于甘蔗种芽的好坏直接影响来年新植甘蔗的出芽率,针对目前甘蔗机械化种植过程中无法实现种芽完好性检测的难题,该文提出一种基于Bayes决策的甘蔗种芽完好性分类方法,将甘蔗种芽分为完好与破损2类。首先利用计算机视觉技术,采集甘蔗种芽图像,在截取有效的种芽区域图像并提取出包括灰度最大值在内的5个分类特征的基础上,统计种芽区域图像特征值的分布情况;然后分析特征值的曲线分布图,利用这些特征的均匀分布区间占整个分布区间的百分比以及完好和破损2类种芽相应百分比的差值,确定能够简化为均匀分布的特征,并将其作为最终的分类特征;再结合全概率公式和贝叶斯公式,将确定的分类特征的类条件概率和先验概率转换为后验概率,通过比较后验概率的大小进行分类;最后选择常见的3个甘蔗品种作为研究对象,利用Matlab对样本进行种芽完好性分类处理。试验结果显示,3个品种的种芽完好性分类准确率分别为92.09%、93.49%和93.02%,破损种芽的分类准确率分别达到98%、97%和96%,该分类方法能够实现甘蔗种芽完好性的分类功能。

    Abstract:

    Abstract: Guangxi, a province in China, contributes more than 60% of China's sugarcane production per year. The sprouting rate of newly planted sugarcane is directly affected by viability of sugarcane buds. In sugarcane mechanized production, the detection of sugarcane bud viability for planting is still an issue and there is no a good classification method for differentiating viable sugarcane buds from the poor ones. To solve the problem, we proposed a classification method based on the minimum error rate of Bayes decision to detect the damaged buds as accurate as possible. Sugarcane cultivars of Taitang 22, Guitang 42 and Yuetang 60 were chosen for this study because they were representative cultivars of sugarcane in the area. We obtained sample images of sugarcane via image acquisition equipment, cut out the effective bud region images with computer vision technology, and extracted five features and eigenvalues including maximum gray scale. Then, a sample database was established, in which the image eigenvalues of the three sugarcane breeds was contained. Based on the data, prior probabilities of intact buds and damaged ones were calculated, from which eigenvalues' statistics of bud region images were obtained, and curve distribution diagrams of eigenvalues were described. By analyzing these statistics and diagrams, we found that all the distribution curves were connected end to end by horizontal lines and inclinable lines like zigzags. So these curves could not be fitted by normal distribution function, quadratic function, cubic function or exponential functions etc. Piecewise function could fit the distribution curve perfectly, but it would make the process of calculation and judgment more complicated when setting classification rules because of the excessive number of segments. Further observation showed that portions of small-proportion inclined lines and the saw tooth peak whose probability was zero could both be neglected. Then, the corresponding eigenvalues of the rest horizontal lines could be simplified to a uniform distribution. Calculating the even-distributed interval width and the entire interval width of the eigenvalues based on the database, the percentage between the two interval widths and the differences of percentage of the corresponding eigenvalues between the intact buds and damaged ones could be obtained. Using the percentage and the difference, even-distributed features could be confirmed. At the meantime, the conditional probability density was calculated by the probability density function of uniform distribution. Three features, including maximum gray scale, average gray scale and standard deviation of gray scale, which were the same even-distributed features of the three sugarcane cultivars, were chosen as the final classification features to simplify the classification rules. According to the full probability and Bayes formula, the prior probability and the conditional probability density of the final classification features were transformed to posterior probability, and then it could be classified by comparing the value of posterior probability. Matlab 2012b could be used to distinguish whether the bud was intact or not. The result of experiments showed that bud integrity classification accuracy of the three sugarcane cultivars were 92.09%, 93.49% and 93.02%, respectively. And the classification accuracy rate of damaged species had reached 98%, 97% and 96%, respectively. It proved that this classification method was feasible, which meant that it could detect damaged buds basically and provided a signal for eliminating the damaged buds automatically.

    参考文献
    相似文献
    引证文献
引用本文

黄亦其,尹凯,黄媚章,王小波,罗昭宇.基于Bayes决策的甘蔗种芽完好性检测与试验[J].农业工程学报,2016,32(5):57-63. DOI:10.11975/j. issn.1002-6819.2016.05.008

Huang Yiqi, Yin Kai, Huang Meizhang, Wang Xiaobo, Luo Zhaoyu. Detection and experiment of sugarcane buds integrity based on Bayes decision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016,32(5):57-63. DOI:10.11975/j. issn.1002-6819.2016.05.008

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-09-20
  • 最后修改日期:2016-01-05
  • 录用日期:
  • 在线发布日期: 2016-01-29
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司