用K-means图像法和主成分分析法监测生菜生长势
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Scientific Research Foundation of Shanxi province (041085); Introduce Dr. Scientific Research Foundation of Shanxi Agricultural University (2013YJ26).


Monitoring lettuce growth using K-means color image segmentation and principal component analysis method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    温室植物生长状况的实时监测可为生产管理提供科学的决策支持。为开发实时监测中的机器视觉技术,该文选定生菜为研究对象,从单株和群体两个角度构建生菜生长势图像检测法。采集自然光条件下生菜整个生命周期俯视及侧视两类序列图像样本,并同步人工实测生菜生长势的动态数据样本,探讨生长势的图像检测指标与人工实测综合指标之间的相关性。对于单株生菜,通过CCD相机获取其投影图像及水平面两垂直方向侧视图像。就投影图像分割,为提高算法运行效率,将图像由RGB模型转换到HSI模型并提取H分量图像,再运用自动阈值法进行图像二值化处理,可测得单株生菜的投影面积。由于侧视图像背景较复杂,故联合使用K-means彩色图像分割法及伪彩色图像处理方法,获得生菜株高值。同时手工测量表达单株生菜生长势的叶片数、株高、x轴和y轴方向生菜植株的最大宽度、生菜植株某选定叶片的长和宽等6个指标,用主成分分析法从中提取出总生长势信息。将该值作为因变量,图像测得的投影面积和株高值作为自变量并进行回归分析。结果表明,模型的显著性检验概率均小于0.0001,除第4株生菜外,其余模型的决定系数均大于0.80,说明模型极显著且具有较高的拟合精度。对于群体生菜,预试验发现其侧视图像难以准确表达群体生菜生长势信息,故只考虑投影图像,其分割方法与单株生菜侧视图像相同。从中可计算得到群体生菜覆盖指数,再手工测量并算得群体生菜体积指数,以体积指数为因变量,以覆盖指数为自变量建模并进行回归分析。结果表明,模型显著性检验概率均小于0.0001,且决定系数均大于0.89,覆盖指数较好地表达了群体生菜生长势信息。故用图像检测获得的生菜投影面积、株高、群体覆盖指数等三项指标表征生菜生长势一方面具有科学性和可行性,在植物生长状况实时监测领域具有潜在的应用价值,另一方面,其图像分割方法和数据统计方法也可为植物生长状况实时监测等提供一定的借鉴和参考。

    Abstract:

    Abstract: Real-time monitoring of plant growth in greenhouse can provide scientific basis for managing plant production. In order to develop real-time monitoring technology based on machine vision, this paper presents a evaluation method based on image processing and principal component analysis method (PCA) for plant growth. Five independent lettuce plants (S1-S5) and 2 lettuce blocks (G1 and G2) were chose randomly from a greenhouse of a local gardening center. For the single lettuce plant sample, top projected canopy area (TPCA) and plant height (PH) were measured by changing RGB color model to HSI model and by automatic threshold segmentation method. Synchronously, plant height, number of leaf (NOL), length of X-axis direction of top projected canopy (LX), length of Y-axis direction of top projected canopy (LY), length and width of a certain leaf (LL, WL), which were the six parameters that express a single lettuce growth, were measured manually. The PCA statistical method was used to generate total lettuce growth information (SZS) based on the forementioned six manually measured parameters. Likewise, for the G1 and G2, cover index was calculated based on K-means color image segmentation technology while lettuce plants volume was calculated by the manual measurements. Cover index is defined as TPCA divided by total area of field of view of G1 or G2. Similarly, lettuce plants volume is total volume of the group lettuce plants (G1 or G2). Lettuce growth models were developed for S1-S5 and G1-G2 using regression analysis with higher accuracy (R2>0.80) and P<0.0001, respectively. The results show that there are significant correlation between the total lettuce growth information and image parameters for a single lettuce plant and a group of lettuce plants. These procedures present a good method for assessment of lettuce growth, quantitatively and non-intrusively. The overall results indicate that K-means color image segmentation and principal component analysis method are feasible for monitoring lettuce plant growth and have potential monitoring many other greenhouse plant growth, on the other hand, the forementioned image segmentation methods and data statistical approach can provide reference for online monitoring of other plant growth.

    参考文献
    相似文献
    引证文献
引用本文

李晓斌,王玉顺,付丽红.用K-means图像法和主成分分析法监测生菜生长势[J].农业工程学报,2016,32(12):179-186. DOI:10.11975/j. issn.1002-6819.2016.12.026

Li Xiaobin, Wang Yushun, Fu Lihong. Monitoring lettuce growth using K-means color image segmentation and principal component analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016,32(12):179-186. DOI:10.11975/j. issn.1002-6819.2016.12.026

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-02-25
  • 最后修改日期:2016-04-15
  • 录用日期:
  • 在线发布日期: 2016-05-09
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司