甩盘滚筒式花生种子机械化包衣工艺参数优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家花生产业技术体系产后加工机械岗位(CARS14);中国农科院创新工程农产品分级贮藏团队。


Parameter optimization on mechanical coating processing of rotary table-roller coating machine for peanut seeds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对花生种子机械化包衣工艺参数研究严重缺失,包衣合格率差、破损率高的问题,该文利用甩盘滚筒式包衣试验台,运用单因素和中心组合试验设计理论开展种药比、种衣剂稀释比(稀释用水与药质量之比)、包衣滚筒转速对包衣合格率及破损率的影响规律研究及工艺参数优化。首先开展单因素试验确定各影响因素对包衣合格率及破损率的影响规律及各因素二次回归试验编码0水平值,随后采用二次正交旋转组合试验方法设计试验并用Design-Expert进行数据处理,建立包衣合格率、破损率回归数学模型并进行方差分析。分析得出对影响包衣合格率的主次因素依次为:种药比>包衣滚筒转速>种衣剂稀释比;影响破损率的主次因素依次为:包衣滚筒转速>种衣剂稀释比>种药比。通过响应曲面方法分析各因素交互作用对包衣合格率、破损率的影响,并对回归模型进行多目标优化,得出甩盘滚筒式包衣试验台最佳工艺参数组合为:种药比31.73 g/mL,种衣剂稀释比4.76,包衣滚筒转速18.32 r/min。此时,包衣合格率最高、破损率最低,其值分别为97.35%、0.37%。将优化参数在5BY-500-J型包衣设备上开展生产验证,包衣合格率达97.05%、破损率0.40%,达到了较为理想的效果。该研究可为甩盘式花生种子包衣机工艺参数优化提供参考。

    Abstract:

    Abstract: In order to improve both poor coating qualified rate and high breakage rate of peanut seeds caused by unreasonable working parameters of rotary table-roller coating equipment, the single factor and central composite experiments were conducted. The effects of the main working parameters, including ratio of seeds weight to coating volume, dilution ratio of seed coating, speed of roller, on coating qualified rate and breakage rate of peanuts coating were analyzed by means of the rotary table-roller coating test rig. The study object was "Huayu 33", which was 16.22-19.16 mm in length, 8.06-10.36 mm in width, and 7.16-8.36 mm in thickness and whose moisture was 11.6%, and thousand kernel weight was 812.1 g. The single factor experiments were firstly conducted, and the results showed the influence laws of the 3 main working parameters on coating qualified rate and breakage rate, which were necessary to determine zero level of each parameter in the quadratic regression revolution design. And then the composite experiment methods of quadratic orthogonal rotation were adopted, the data were analyzed based on the Design-Expert software, the mathematical regression models of peanuts coating rate and breakage rate were built, and their corresponding variance analysis were conducted too. A regression equation of the relationship between variation coefficient of the 3 main working parameters was obtained. Through the analysis of variance, the results showed that the most influential factor for the coating qualified rate was the ratio of seeds weight to coating volume, and the minimum impact factor was the dilution ratio of seed coating; regarding to the breakage rate, the most influential factor was the speed of roller, and the minimum impact factor was the ratio of seeds weight to coating volume. The response surface method was utilized to analyze the effects of factors' interaction on the coating qualified rate and breakage rate, and the multi-objective optimizations were conducted for the regression models. The optimal combination working parameters of the drum coating test rig were the roller speed of 18.32 r/min, ratio of seeds weight to coating volume of 31.73 g/mL, and dilution ratio of seed coating of 4.76. All of those were obtained by the optimization solution of all factors with the quadratic regression model equation of performance evaluation indices in the range of experimental parameters constraints. Under the condition of the optimal combination working parameters, the coating qualified rate and the breakage rate were 97.35% and 0.37%, respectively. This coating quality met the need of peanut seeds processing industry. The results of verification test were consistent with those of optimization solution. Production verification test was conducted with the 5BY-500-J coating machine (the productivity was 5 t/h when it was used for corn seeds coating operation) in Nanjing Agricultural Machinery Factory. The coating machine worked the same as the rotary table-roller coating test rig, but the working parameters were not reasonable for peanut coating. In the experiment, the working parameters of 5BY-500-J coating machine were adjusted according the optimization results by variable frequency regulation of the drum and the control of feeding parts of seeds coating. With the optimal parameters applied by the coating machine, the coating quality was improved greatly, and the coating qualified rate and breakage rate were 97.05% and 0.40%, respectively, which were very close to those obtained from the previous model results. The results of verification showed that the coating machine could be used for peanut seeds processing after working parameters optimization. The study provides the scientific basis for the working parameter optimization of rotary table-roller coating machine for peanut seeds.

    参考文献
    相似文献
    引证文献
引用本文

王建楠,谢焕雄,胡志超,胡良龙,彭宝良,刘敏基.甩盘滚筒式花生种子机械化包衣工艺参数优化[J].农业工程学报,2017,33(7):43-50. DOI:10.11975/j. issn.1002-6819.2017.07.006

Wang Jiannan, Xie Huanxiong, Hu Zhichao, Hu Lianglong, Peng Baoliang, Liu Minji. Parameter optimization on mechanical coating processing of rotary table-roller coating machine for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017,33(7):43-50. DOI:10.11975/j. issn.1002-6819.2017.07.006

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-26
  • 最后修改日期:2017-03-08
  • 录用日期:
  • 在线发布日期: 2017-04-22
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司