泵轮轴向振动条件下高速液力耦合器特性
作者:
基金项目:

国家自然基金(51475266,51605254);水电机械设备设计与维护湖北省重点实验室(三峡大学)开放基金(2016KJX03);宜昌市科技局项目(A14-302-a03)


Characteristics of high speed hydraulic coupler under pump wheel axial vibration conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对泵轮轴向振动条件下高速液力耦合器特性问题,基于RNG k-ε模型、流体体积法(volume of fluid,VOF)两相流模型、动网格技术、压力隐式算子分裂(pressure-implicit with splitting of operators,PISO)算法和变时间步长法对液力耦合器泵轮在轴向振动条件下的内流场进行数值模拟,通过试验完成对模型的准确性验证。分析液力耦合器流道内部两相流动规律以及受力特性,结果表明:与径向振动相比,相同振幅条件下的轴向振动对循环圆内流量脉动和泵轮、涡轮转矩影响较大;额定转速越高,其泵轮、涡轮转矩脉动幅值、轴向力波动范围越大;振动频率越大,泵轮、涡轮转矩偏差越大;轴向振动幅值越大,泵轮涡轮转矩波动范围越大。从减小转矩波动范围和轴向力的角度控制轴向窜动值不应超过0.04 mm较为合适。

    Abstract:

    Abstract: Hydrodynamic coupler is used for startup tool in the large inertia mechanical equipment. The incomplete neutrality of impeller installation and loading perturbation cause the input shaft of pump wheel to vibrate. Internal flow characteristics of hydrodynamic coupler are affected by the vibration of the pump wheel. And the external performance of hydrodynamic coupler is determined by its distribution of internal flow field. Therefore, it is very important to make a deep research on the distribution of internal flow field under the condition of vibration. Numerical simulation is a main way to study the internal flow field of hydrodynamic coupler. The simulation physical model was created firstly by using the software of ICEM (integrated computer engineering and manufacturing), and hexahedron and tetrahedron cells were used to partition the calculation region to generate the grids. The hexahedron was used in main channel of pump wheel and turbine. The tetrahedron was used in boundary motion region. And then the software of FLUENT was used to perform the simulation. The UDF (user-defined function) of FLUENT was used to define the parameters of dynamic mesh control, as well as the axial velocity of pump. Realizable k-ε model was used, besides, the turbulence model and the second-order upwind scheme were adopted for solving the momentum and kinetic energy equation, and the PISO (pressure-implicit with splitting of operators) algorithm was used for pressure and velocity coupling. With the pump axial moving, the boundary of the corresponding flow field would change. The dynamic mesh model was used for boundary motion domain caused by vibration. The results of numerical simulation that are calculated by different two-phase flow models were quite different. In order to obtain accurate and reliable results of numerical simulation, the numerical simulation and external characteristic experimental results were compared. It showed that the error of VOF (volume of fluid) model was less than 5%, and the error of Mixture model was over 20%. It showed that the simulation results by VOF models were more accurate and close to the experimental results. Furthermore, the external characteristics and phase distribution law of fluid coupling were also compared and analyzed under different axial vibration status. And the results indicated that the vibration of the pump wheel could make the flow pulsation increase. Under the condition of radial vibration, the disturbance direction was perpendicular to the gas-liquid interface. A larger wave crest could be formed within pump wheel. However, due to the centrifugal force in the pump wheel, the wave would rapidly decrease. Therefore, the flow pulsation in the turbine was relatively small, that was to say, the torque change was relatively small. Under the condition of axial vibration, the direction of vibration was the same or opposite to the direction of circulation. Therefore, it would effectively enhance the fluctuation of the flow pulsation and cause the larger fluctuation of turbine torque. Numerical calculation showed that the higher the rated speed, the larger the torque ripple amplitude of pump turbine and the fluctuation range of radial force and axial force. The vibration period decreased and the deviation of the torque ripple of the pump turbine was bigger. Vibration would lead to the decrease of the transmission torque, and the axial vibration had a greater impact on the transmission torque, and a smaller influence on the radial force. The vibration would cause the pump wheel and turbine torque to fluctuate, and the pulsation amplitude increased with the increase of the vibration amplitude. When the amplitude of vibration was less than 0.02 mm, the amplitude of torque was smaller. But when the amplitude of vibration was 0.04 mm, the amplitude of torque increased sharply. On that basis, the axial clearance value should not be more than 0.04 mm (the axial clearance was twice of the amplitude of vibration).

    参考文献
    [1]初长祥,马文星. 工程机械液压与液力传动系统(液力卷)[M]. 北京:化学工业出版社,2015.
    [2]杨贵华. 液力传动节能装置:液力偶合器、液黏调速离合器[M]. 北京:化学工业出版社,2010.
    [3]刘应诚. 液力偶合器实用手册[M]. 北京:化学工业出版社,2008.
    [4]伍川勇.液力耦合器振动的原因分析[J]. 风机技术,2011(2):67-69.Wu Chuanyong. Analysis of causes on hydraulic coupling vibration[J]. Wind Turbine Technology, 2011(2): 67-69. (in Chinese with English abstract)
    [5]Jia Xiaoqi, Cui Baoling, Zhang Yuliang, et al. Study on Internal flow and external performance of a semi-open impeller centrifugal pump with different tip clearances[J]. International Journal of Turbo & Jet-Engines, 2014(5): 2191-2197.
    [6]柴博森,马文星,卢秀泉,等. 基于粒子跟踪测速技术的液力耦合器内部流速测定方法[J]. 农业工程学报,2011,27(7):140-145.Chai Bosen, Ma Wenxing, Lu Xiuquan, et al. Internal flow velocimetry of hydraulic coupling based on particle tracking velocimetry technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 140-145. (in Chinese with English abstract)
    [7]柴博森,马文星,刘春宝. 基于互相关算法的液力偶合器内部流场分析[J]. 农业机械学报,2011,42(12):38-42.Chai Bosen, Ma Wenxing, Liu Chunbao. Analysis of internal flow field in hydrodynamic coupling based on crosscorrelation algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 38-42. (in Chinese with English abstract)
    [8]柴博森,王玉建,刘春宝,等. 基于粒子图像测速技术的液力变矩器涡轮内流场测试与分析[J]. 农业工程学报,2015,31(12):92-97.Chai Bosen, Wang Yujian, Liu Chunbao, et al. Test and analysis of internal flow field in turbine of hydrodynamic torque converter based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 92-97. (in Chinese with English abstract)
    [9]范丽丹,马文星,柴博森,等. 液力耦合器气液两相流动的数值模拟与粒子图像测速[J]. 农业工程学报,2011,27(11):66-70.Fan Lidan, Ma Wenxing, Chai Bosen, et al. Numerical simulation and particle image velocimetry for gas-liquid two-phase flow in hydraulic couplings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 66-70. (in Chinese with English abstract)
    [10]何延东,马文星,刘春宝. 液力偶合器部分充液流场数值模拟与特性计算[J]. 农业机械学报,2009,40(5):24-28.He Yandong, Ma Wenxing, Liu Chunbao. Numerical simulation and characteristic calculation of hydrodynamic coupling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(5): 24-28. (in Chinese with English abstract)
    [11]何延东,马文星,邓洪超,等. 基于CFD 的调速型液力耦合器设计方法[J]. 农业机械学报,2010,41(6):31-36.He Yangdong, Ma Wenxing, Deng Hongchao. Design method of variable speed hydrodynamic coupling based on CFD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 31-36. (in Chinese with English abstract)
    [12]Mirsepassi A, Rankin D D. Particle image velocimetry in viscoelastic fluids and particle interaction effects[J]. Experiments in Fluids, 2014, 55(1): 1-7.
    [13]郭枭,李春丽,邱广明,等. 基于粒子图像测速技术的近膜面流场特性[J]. 农业工程学报,2015,31(1):91-97.Guo Xiao, Li Chunli, Qiu Guangming, et al. Characteristics of flow field near membrane surface based on particle image velocimetry technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 91-97. (in Chinese with English abstract)
    [14]余国保,周云波. 基于大涡模拟法的液力缓速器内流场仿真分析[J]. 机械工程与自动化, 2014(1):52-54.Yu Guobao, Zhou Yunbo. Internal flow field analysis based on large eddy simulation for hydrodynamic retarder[J]. Mechanical Engineering & Automation, 2014(1): 52-54. (in Chinese with English abstract)
    [15]Luo Y, Feng L H, Liu S H, et al. Numerical comparisons of the performance of a hydraulic coupling with different pump rotational speeds[C]//IOP Conference Series: Materials Science and Engineering, 2013: 257-260.
    [16]Luo Y, Zuo Z G, Liu S H, et al. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model[C]//IOP Conference Series: Materials Science and Engineering, 2013: 668-672.
    [17]Huitenga H, Mitra N K. Improving startup behavior of fluid couplings through modification of runner geometry: Part 2: Modification of runner geometry and its effects on the operation characteristics[J]. ASME Journal of Fluids Engineering, 2000, 122(4): 689-693.
    [18]Sinibaldi E, Beux F, Salvetti M V. A numerical method for 3D barotropic flows in turbomachinery[J]. Flow, Turbulence and Combustion, 2006, 76(4): 371-381.
    [19]Hampel U, Hoppe D, Diele K H, et al. Application of ga mma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2): 85-90.
    [20]何延东. 基于CFD的大功率调速型液力偶合器设计[D]. 长春:吉林大学, 2009.He Yandong. Design of Variable Speed High-power Hydrodynamic Coupling Basen On CFD[D]. Changchun: Jilin University, 2009. (in Chinese with English abstract)
    [21]石宝龙,岂兴明,矫津毅,等. 二次流与叶顶间隙损失的数值研究[J]. 航空动力学报,2009,24(5):1096-1100.Shi Baolong, Qi Xingming, Jiao Jinyi, et al. Numerical analysis of the secondary flow and tip clearance leakage loss[J]. Journal of Aerospace Power, 2009, 24(5): 1096-1100.(in Chinese with English abstract).
    [22]Lu Xiuquan, Ma Wenxing, Fan Lidan, et al. Visualization experiment with PIV and analysis of flow field in hydrodynamic coupling[C]//2010 International Conference on Applied Mechanics and Mechanical Engineering, Clausthal-Zellerfeld, Trans Tech Publications, Germany, 2010: 1327-1333.
    [23]Charles N M, Danamichele B. Hydraulic analysis of a reversible fluid coupling[J]. Journal of Fluids Engineering, 2002, 123(2): 249-255.
    [24]Huitenga H, Mitra N K. Improving startup behavior of fluid couplings through modification of runner geometry: partⅠ- fluid flow analysis and proposed improvement[J]. Journal ofFluids Engineering, 2000, 122(4): 683-688.
    [25]Magagnato F, Pritz B, Gabi M. Calculation of the VKI turbine blade with LES and DES[J]. Journal of Thermal Science, 2007, 16(4): 321-327.
    [26]Tauro F, Porfiri M, Grimaldi S. Orienting the camera and firing lasers to enhance large scale particle image velocimetry for streamflow monitoring[J]. Water Resources Research, 2014, 50(9): 7470-7483.
    [27]Gao Qi, Wang Hongping, Shen Gongxin. Review on development of volumetric particle image velocimetry[J]. Chinese Science Bulletin, 2013, 58(36): 4541-4556.
    [28]Debesse P, Carlès D B, Lusseyran F, et al. Oscillating and streaming flow identification in a thermoacoustic resonator, from undersampled PIV measurements[J]. Measurement Science and Technology, 2014, 25(2): 025005.
    [29]Charonko J J, Vlachos P P. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio[J]. Measurement Science and Technology, 2013, 24(6): 065301.
    [30]Westerweel J, Elsinga G E, Adrian R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 409-436.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苏华山,陈从平,赵美云,高振军,余万,张扬军.泵轮轴向振动条件下高速液力耦合器特性[J].农业工程学报,2017,33(7):51-57. DOI:10.11975/j. issn.1002-6819.2017.07.007

Su Huashan, Chen Congping, Zhao Meiyun, Gao Zhenjun, Yu Wan, Zhang Yangjun. Characteristics of high speed hydraulic coupler under pump wheel axial vibration conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017,33(7):51-57. DOI:10.11975/j. issn.1002-6819.2017.07.007

复制
分享
文章指标
  • 点击次数:1648
  • 下载次数: 981
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-09-27
  • 最后修改日期:2017-04-10
  • 在线发布日期: 2017-04-22
文章二维码
您是第39814745位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!