双定子摆动液压马达泄漏与容积效率分析及密封改进
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(50975246)


Analysis of leakage and volumetric efficiency and seal improvement for double-stator swing hydraulic motor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了详细分析双定子摆动液压马达的泄漏和容积效率,获得合理的间隙密封尺寸和密封结构改进方案,基于双定子摆动液压马达内部结构的分析,归纳出内、外马达的几何排量计算式,分析出该马达的主要泄漏途径。通过建立各泄漏途径的流量数学式,得到马达在不同连接形式下总泄漏量的一般公式。对不同连接形式下马达的容积效率进行了理论计算,针对马达的端面泄漏提出了密封结构改进方案,同时搭建试验台对改进前后的双定子摆动液压马达样机进行了容积效率测试。结果表明,随着马达进出口压差从1 MPa逐渐升高到10 MPa,马达的容积效率随之降低;且在不同的连接方式下,马达的容积效率也不相同,当进出油口压差一定时,外马达单独工作容积效率最高,内、外马达差动工作容积效率最低。如当马达行程时间为3 s,进出油口压差为4 MPa时,马达容积效率最大值约为92%,最小值约为86%。并且对该马达端面密封的改进可使其容积效率在一定程度上有所提高。该研究为双定子摆动液压马达的设计和应用提供 参考。

    Abstract:

    Abstract: In view of the problem that the existing swing hydraulic motor can only output one torque and one rotation speed, a new type of double-stator swing hydraulic motor is put forward, which combines the structure of vane swing hydraulic motor and the thought of double-stator. This motor consists of a rotor, an inner-stator and an outer-stator to form 2 groups of motors in one case. This motor can achieve a variety of connections, such as inner motors working alone, outer motors working alone, inner and outer motors working together, and inner and outer motors working differentially, so this motor can realize multistage speed and multistage torque output through changing its connections. In order to accurately analyze the leakage and volumetric efficiency of the double-stator swing hydraulic motor, and to obtain some reasonable gap seal size and seal structure improvement proposals. Through the analysis of the internal structure of double-stator swing hydraulic motor, the geometric displacement calculation formulas of inner and outer motors are summed up and the main internal leakage paths are analyzed; the main internal leakage paths consist of end face clearance and radial clearance leakage. A general formula of the total leakage is obtained through establishing the flow's mathematical expression of every leakage path. The total leakage of this motor is not only related to its internal structure, but also related to the speed and pressure. The volumetric efficiency of this swing hydraulic motor in different connections is calculated theoretically. Every leakage of inner and outer motors is calculated theoretically, and the end face clearance leakage of motors is relatively bigger than the radial clearance leakage. The end face clearance leakage of outer motor accounts for 94% of the total leakage of outer motor, and the end face clearance leakage of inner motor accounts for 73% of the total leakage of inner motor. The maximum and average leakages of the double-stator swing hydraulic motor are calculated theoretically. When the travel time of this motor is 3 s, and the pressure of the ports is 10 MPa, the maximum theoretical volumetric efficiency of this motor is 96.58%, and the minimum theoretical volumetric efficiency is 66.83%. In view of the end face clearance leakage, a seal structure optimization program is put forward. It can improve the volumetric efficiency of this motor through adding the floating side panels at the both sides of this motor. The improved and unimproved prototypes of double-stator swing hydraulic motors are tested in the experimental platform, and the volumetric efficiency of the motor prototype in 4 different connections is tested. It turns out that with the increasing of differential pressure of the motor ports, the volumetric efficiency decreases, and the volumetric efficiency of this swing hydraulic motor in different connections is different; when the differential pressure of the ports is fixed, the volumetric efficiency of this motor in outer motor working alone is the highest, and the volumetric efficiency of this motor when inner and outer motors working in differential connection is the lowest. When the travel time of this motor is 3 s, and the pressure of the ports is 4 MPa, the volumetric efficiency of this motor in inner motor working alone is 88.81%, the volumetric efficiency of this motor in outer motor working alone is 92%, the volumetric efficiency of this motor in inner and outer motors working differentially is 86%, and the volumetric efficiency of this motor in inner and outer motors working together is 90.32%. The reason why the volumetric efficiency of this swing hydraulic motor is lower in differential working is that its leakage increases and the theoretical flow decreases in differential working. Because the processing accuracy of the experiment prototype is lower, there is a certain deviation between the experimental results and theoretical analysis, but they are basically the same. The improvement of the motor end seal can increase its volumetric efficiency by about 11%. This result can provide reference for the design and application of double-stator swing hydraulic motor.

    参考文献
    相似文献
    引证文献
引用本文

闻德生,商旭东,顾 攀,潘为圆,石滋洲,郑 伟.双定子摆动液压马达泄漏与容积效率分析及密封改进[J].农业工程学报,2017,33(12):74-81. DOI:10.11975/j. issn.1002-6819.2017.12.010

Wen Desheng, Shang Xudong, Gu Pan, Pan Weiyuan, Shi Zizhou, Zheng Wei. Analysis of leakage and volumetric efficiency and seal improvement for double-stator swing hydraulic motor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017,33(12):74-81. DOI:10.11975/j. issn.1002-6819.2017.12.010

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-10-31
  • 最后修改日期:2017-06-07
  • 录用日期:
  • 在线发布日期: 2017-07-01
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司