基于径向基神经网络与粒子群算法的双叶片泵多目标优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51476070、51109094)


Multi-objective optimization of double vane pump based on radial basis neural network and particle swarm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性能数据,采用径向基(radial basis function,RBF)神经网络建立结构参数与扬程、效率性能间的预测模型,并将其用作粒子群算法的适应值评价模型,在样本空间内进行最优值求解,获得扬程和效率的Pareto解。选取扬程最优个体和效率最优个体进行数值模拟,研究其在输运不同介质时的性能与内流场差异,并与初始模型的数值模拟数据相比较。经试验验证,清水介质中设计流量点扬程最优个体的扬程较初始个体增加0.96 m,增幅达到5.5%;效率最优个体的效率较初始个体提升了10.11个百分点。该优化方法改善了叶轮水力特性,使双叶片泵性能得到提高。

    Abstract:

    The double vane pump is a special type of flow vane centrifugal pump. It adopts a design with less blades, which leads to a disadvantage that the performance of the double vane pump is inferior to that of the multi-blade pump at the same specific velocity. Its stability is 3%-8% lower than of a vane centrifugal pump.Therefore, it is necessary to improve the work efficiency by optimizing the hydraulic design. This article took a double-passage sewage pump model 80QW50-15-4 as the research object. The optimization objective was to design the head and efficiency of the flow point. ANSYS CFX(computational fluid dynamics x) was used to perform numerical simulation to obtain performance data. According to the two-dimensional hydraulic drawing of the initial model pump, the three-dimensional modeling software Pro/Engineer5.0 was used to simulate the water body of the impeller and the volute and to perform mesh division and irrelevance verification. The model pump was subjected to numerical simulation and experiment of clear water medium, and the performance curve was obtained and compared. The error analysis showed that the maximum error of head and efficiency was 3.9% and 1.7%, which meant that the performance prediction model established by this method had high accuracy. Partial initial model impeller structure parameters were selected for performance impact analysis. The Plackett-Burman screening test was used to determine the blade wrap angle, blade outlet angle and impeller outlet width were significant factors affecting head and efficiency of design flow. According to Fang Kaitai's unified design table, training samples of RBF(radial basis function) neural network were arranged, so as to establish important structural parameters and performance prediction models, and generated 5 groups of structural parameters random for neural network testing and error analysis. The head and efficiency performance prediction model trained by radial basis neural network was introduced into the particle swarm optimization algorithm as the fitness evaluation model of particle swarm optimization algorithm. The Pareto optimal solution set of head and efficiency was obtained, and the optimal head and efficiency were selected. In addition, this paper also studied the performance and internal flow field differences of the initial individual, the optimal individual of head and the optimal individual of efficiency when transporting different media. It was known from the performance curve that the performance of individuals was improved when transporting different media. The reason for the performance improvement was revealed by the internal flow field distribution map. In order to verify the practicability of the optimization results, a clear water test was performed on the optimal head and the most efficient individual to obtain a performance curve and compared with the performance curve of the initial individual. Among them, the experimental head of the optimal head at the design flow point increased by 0.96 m than the initial individual, the increase rate reached 5.5%, the efficiency increased by 1.6 percentage point; the efficiency of the best individual increased by 10.11 percentage point, the head decreased slightly but met the design requirements. The test proved that the optimization effect was obvious. This optimization method improves the hydraulic characteristics of impeller and the performance of double vane pump.

    参考文献
    相似文献
    引证文献
引用本文

王春林,胡蓓蓓,冯一鸣,刘轲轲.基于径向基神经网络与粒子群算法的双叶片泵多目标优化[J].农业工程学报,2019,35(2):25-32. DOI:10.11975/j. issn.1002-6819.2019.02.004

Wang Chunlin, Hu Beibei, Feng Yiming, Liu Keke. Multi-objective optimization of double vane pump based on radial basis neural network and particle swarm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019,35(2):25-32. DOI:10.11975/j. issn.1002-6819.2019.02.004

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-01
  • 最后修改日期:2018-12-30
  • 录用日期:
  • 在线发布日期: 2019-01-21
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司