Abstract:Vinegar plays an important role in our daily diet. Solid-state fermentation of vinegar using reactors has several advantages over the traditional methods, which include shorter fermentation process, and good controlled working environment. In order to fully understand the dynamic changes of main components and flavor compounds during the solid-state fermentation of vinegar in rotary drum reactor, samples were taken throughout the fermentation process. Alcohol, total acid, reducing sugar, amino nitrogen, organic acid and volatile flavor in the process of vinegar fermentation were studied by high performance liquid chromatography, solid-phase microextraction, and gas chromatography-mass spectrometry. Meanwhile, principal component analysis was carried out to explore the difference of volatile flavor in vinegar at different fermentation stages. The results showed that the fermentation process can be divided into three stages: starch saccharification, alcohol fermentation, and oxidation of ethanol to acetic acid. The alcohol content increased rapidly within 0-4 days of fermentation, then decreased gradually to zero until the end of fermentation. The total acid content showed a sharp increase tendency first, followed by a slight increase at the late stage of fermentation. The reducing sugar content decreased rapidly at first, then gradually increased during acetic acid fermentation, and finally gradually decreased. The amino nitrogen increased rapidly at first, followed by a gradual decrease at the end of fermentation. Seven organic acids were detected in our research, including acetic acid, lactic acid, oxalic acid, succinic acid, tartaric acid, citric acid, and malic acid. Among them, acetic acid and lactic acid were the main organic acids in the whole fermentation process. The lactic acid content increased rapidly first, and became the dominant organic acid in the alcohol fermentation stage. Then it showed a gradual decrease until the end of fermentation. For acetic acid, a gradual increase tendency was observed during the whole fermentation process, which accounted for 64.87% of all the organic acids contents. Compared with those, the content of other organic acids was less, and the variation during fermentation was relatively small. These organic acids were also crucial for the formation of characteristic taste of vinegar. A total of 64 flavor volatile substances were detected, including 25 esters, 12 alcohols, 6 acids, 5 phenols, 5 aldehydes, 6 ketones and 5 heterocyclic compounds. The principal component analysis results showed that the most dominant ones responsible for volatile flavor in the early, middle, and later stage of fermentation were alcohols, esters and aldehydes, and acids, respectively. Other volatile compounds, such as aldehydes, phenols, ketones, heterocycle, were present in small amounts during vinegar fermentation based on the reactor. However, they also play a vital role in the formation of special flavor for vinegar. This is the first report to study the dynamic changes of vinegar quality during fermentation process based on a reactor. The results would enhance our understanding of the fermentation property of rotary drum solid-state fermentation vinegar reactor, which may be helpful for the improvement and effective management of reactor to promote its industrial application.