基于仿真及物理模型试验构建圆形断面管道非满流流速函数
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2016YFC0402504)


Establishment of velocity function of partially-filled flow in circular pipe based on simulation and physical model experiment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    明渠断面流速分布是精确测量明渠断面流量的基础,也是明渠水流运动规律研究的基本问题。为探究圆形断面管道非满流的断面流速分布特性,采用经实测资料验证的三维紊流数学模型及数值求解方法,对不同底坡和充满度组合情况下的圆管非满流进行了数值模拟。结果表明:圆管非满流的断面流速分布对充满度非常敏感,充满度越大,垂线流速的非单调性越明显,当充满度低于0.5时,未出现最大流速点下潜(dip)现象;当充满度超过0.5时,dip现象越发明显,这是因为当充满度超过0.5后,内凹型侧壁对水面的约束作用增强,断面二次流更加明显。圆管非满流断面上各垂线的流速分布曲线具有很好的相似性,均接近于抛物线曲线特征,二次函数中的待定系数主要受垂线横向位置和充满度的影响。通过回归分析建立了圆管无压均匀流中沿垂线流速的抛物线分布公式,同时给出了各系数的确定方法,按上述流速分布律计算的流速值与实测值吻合良好,曲线拟合的决定系数均在0.92以上,表明给出的抛物型垂线流速分布规律是合理可靠的。

    Abstract:

    Velocity distribution of cross-section in open channel is not only the basis of accurate measurement of flow rate, but also the basic problem of studying the hydraulic characteristics of open channel. In order to explore the cross-sectional velocity distribution of partially-filled flow in circular pipe, a 3-D turbulent mathematical model and numerical solution method, verified by measured data, were adopted to simulate the partially-filled flow in circular pipe with different combinations of slopes and filling ratios. By comparison of the measured values and calculated values, the results showed that in a circular pipe with diameter 0.4 m, bottom slope 0.004, and flow rate 0.246 m3/s (corresponding filling ratio 0.47), the maximum relative error between the calculated velocities and measured values on all vertical lines was within the plus or minus 4.2%, and the maximum relative error between the calculated turbulent kinetic energy and measured values on all vertical lines was within the plus or minus 4.85%, suggesting that mathematical model and its parameters for simulation of the velocity distribution had higher calculation accuracy. The simulation results showed that cross-sectional velocity distribution was very sensitive to the filling ratio. The larger filling ratio would lead to more obvious dip phenomenon of maximum vertical velocity. When the filling ratio was lower than 0.5, no dip phenomenon occurred. When the filling ratio exceeded 0.5, the dip phenomenon became more obvious. This was because when the filling degree exceeded 0.5, the constraint effect of the side wall on the water surface was enhanced, and the secondary flow in the section was more obvious. There also showed obvious differences in the forms of vertical velocity distribution at different transverse positions, especially those close to the boundary wall, which was caused by the enhanced constraint effect of the concave side wall. Vertical profiles of time-averaged longitudinal velocity among various cases had very good similarity, and the profile curves were close to the feature of parabolic function. Influenced by factors such as section geometry and hydraulic characteristics, although the velocity distribution of each vertical line had a good similarity, the empirical coefficients by parabolic regression analysis that determined the shape of the velocity distribution curve on the specific vertical line had changed a lot. Multi-factor analysis of variance was conducted to the undetermined coefficients in parabolic function, which showed they were mainly affected by transverse position of vertical lines and filling ratio of cross section. According to the affecting degree of filling ratio and transverse position to the empirical coefficients, the cross sections of the partially-filled flow were divided into the central areas and the side wall areas along the transverse direction. Moreover, the dividing lines between central area and side wall area when the filling ratio was less than 0.5 was different from that when the filling ratio was greater than 0.5. Analysis of variance showed that the empirical coefficients of the central area were linearly correlated with the transverse position and the filling ratio, while the coefficients of the side wall area were mainly affected by the transverse position of the vertical line, and basically independent of the filling ratio. By means of regression analysis, the velocity parabolic distribution formula on vertical lines in partially-filled flow were established, and the determination methods of each coefficients were given. The calculated values of vertical velocity distribution areas were in good agreement with the measured values, which indicated that the parabolic vertical velocity distribution law was reliable. Parabolic function could better reflect the velocity distribution along vertical lines of partially filled flow in circular pipe. Application of the parabolic function to obtain flow rate on cross section, cannot only overcome the irrationality of Manning formula, but also was more easier than logarithmic law to be used in engineering calculation.

    参考文献
    相似文献
    引证文献
引用本文

丁法龙,茅泽育,韩凯.基于仿真及物理模型试验构建圆形断面管道非满流流速函数[J].农业工程学报,2019,35(18):55-61. DOI:10.11975/j. issn.1002-6819.2019.18.007

Ding Falong, Mao Zeyu, Han Kai. Establishment of velocity function of partially-filled flow in circular pipe based on simulation and physical model experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019,35(18):55-61. DOI:10.11975/j. issn.1002-6819.2019.18.007

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-13
  • 最后修改日期:2019-08-10
  • 录用日期:
  • 在线发布日期: 2019-10-12
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司