功能纳米材料的"瘦肉精"传感检测技术研究进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市农林科学院博士后科研基金(2018-ZZ-020);北京市农林科学院科技创新能力建设专项(KJCX20170420);北京市自然科学基金(6194038、L182031)


Review on sensing detection progress of "lean meat agent" based on functional nanomaterials
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    瘦肉精系一类具有相似结构的β-肾上腺素受体激动剂化合物,曾被滥用作为动物生长促进剂,以提高胴体瘦肉率。中国虽自2010年起禁止其应用于动物养殖环节,但当前,"瘦肉精"类物质非法添加现象仍时有发生,且其替代品多、隐蔽性不断增强对畜产品安全和人类健康仍构成极大威胁。功能纳米材料所具有的特殊结构及性质,极大地提升了现有传感检测技术的性能,使得现有传感检测技术不断朝着灵敏、高效、简便、低成本及抗干扰能力不断增强等方向发展。该文分别从金纳米材料、碳质纳米材料、量子点以及其他新型纳米材料角度出发,总结了以上纳米材料与传感检测技术相结合在"瘦肉精"检测方面的研究进展,分析了各种检测方法的优缺点,并提出了未来功能纳米材料与传感检测技术相结合需要提升的地方,为下一步开发更灵敏准确、简便易行、高通量及低成本的检测方法提供参考。

    Abstract:

    The "lean meat agents" is a class of β-agonists with a similar structure, which had been abused as an animal growth promoter to improve carcass lean meat rate. However, the drug residue accumulation in meat and body tissues would cause acute poisoning after eating, which gave rise to muscular pain, dizziness, cardiacpalpitation and vomiting, so China has banned its application for growth promotion in animal breeding processes since 2010. But the illegal abuse of "lean meat agents" still frequently occurs in some animal farms. Besides, the plenty of substitutes and increasingly concealing performance still pose a great threat to the safety of animal products and human health. The frequently abused ''lean meat agents'' include clenbuterol (CLE), ractopamine (RAC), salbutamol (SAL), terbutaline, cimaterol, phenylethanolamine A, etc. At present, various analytical methods have been developed to detect the drug residue, including high performance liquid chromatography (HPLC), gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), capillary electrophoresis (CE) and enzyme-linked immunoassay (ELISA), lateral flow chromatography, surface-enhanced Raman immunity, and molecular imprinting polymers, and so on. While these chromatographic methods all require complicated sample pre-treatments, which is not only laborious and time consuming but also sophisticated and large apparatus. Thus, they are most often used as precise quantitative and confirmatory methods, and not fit to the rapid screening. The ELISA and lateral flow chromatography are suitable for field analysis and extensive screening, but the sensitivity is not unsatisfactory in most time. So the routine methods have been unable to meet the requirements of multiple application scenarios and the complex sample substrates. In the past decades, the nanotechnology has made great progress. The functional nanomaterials possess a lot of extraordinary property, such as large surface-to-volume ratio, excellent electrical conductivity, high chemical stability, good biological compatibility, etc. At the time, sensors have interdisciplinary applications in many fields, including chemistry, biology and electronics, industry, agriculture, clinical medicine, environmental protection, food safety jaince and the other fields. The special structure and properties of functional nanomaterials have greatly improved the performance of the existing sensing technologies, making the sensing technologies develop towards the direction of sensitivity, efficiency, simplicity, low cost and increasing anti-interference ability. In addition, the sensing instrument is easier to be miniaturized, portable and automatic, combining with the functional nanomaterials, which is expected to achieve real-time, online, simple, sensitive, high-flux and portable drug residue detection, having a promising application prospects. So far, the wide and common use functional nanomaterials in sensing detection include gold nanomaterials, carbon nanomaterials, quantum dots and other new nanomaterials (such as Phosphorene, Janus nanoparticles, CeO2 nanoparticles), so the above-mentioned functional nanomaterials were summarized with the various detection principle of sensing test, such as colorimetric methods, surface enhanced Raman scattering, immunoassay, electrochemical and electrochemiluminescence methods in this review. In generally, functional nanomaterials and composite nanomaterials usually improve sensor performance from the following aspects, as a reaction substrate, load the specific molecular recognition, improve electrical conductivity, surface enhancement effect, signal conduction properties, catalytic properties and good biocompatibility, and so on. In the future, in order to improve the performance of sensor, the functional nanomaterials can be improved in the following aspects. Firstly, the specificity of the nanomaterials in free-label sensor should be enhanced to ensure the detection methods suitable to the needs of actual detection. Secondly, development and screening of new kind of functional nanomaterial, or synthesis the nanomaterial contains two or more elements or has special structure, to obtain the superior performance. Thirdly, make further study of the strengthening mechanism of nanomaterial, and innovate the modification methods for identifying molecules. With the rapid development in nanotechnology, the functional nanomaterials in sensing technology will make greater function to develop more sensitive, accurate, simple, high throughput and low-cost detection methods for drug residue detection.

    参考文献
    相似文献
    引证文献
引用本文

赵杰,梁刚,李安,满燕,靳欣欣,潘立刚.功能纳米材料的"瘦肉精"传感检测技术研究进展[J].农业工程学报,2019,35(18):255-266. DOI:10.11975/j. issn.1002-6819.2019.18.031

Zhao Jie, Liang Gang, Li An, Man Yan, Jin Xinxin, Pan Ligang. Review on sensing detection progress of "lean meat agent" based on functional nanomaterials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019,35(18):255-266. DOI:10.11975/j. issn.1002-6819.2019.18.031

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-25
  • 最后修改日期:2019-08-26
  • 录用日期:
  • 在线发布日期: 2019-10-12
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司