基于K-SVD和正交匹配追踪稀疏表示的稻飞虱图像分类方法
作者:
基金项目:

国家自然科学基金面上项目( 61773216)、江苏省自然科学基金面上项目( BK20171386)


Sparse representation classification method of rice planthopper image based on K-SVD and orthogonal matching pursuit algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对当前稻飞虱图像分类研究中存在图像识别速度慢、分类精度低的不足,该文提出一种基于K-SVD和正交匹配追踪 (orthogonal matching pursuit, OMP) 稀疏表示的稻飞虱图像分类方法。首先,根据稻飞虱的趋光性特点,使用团队自主研发的野外昆虫图像采集装置自动获取稻田害虫图像;然后,利用K-SVD算法对稻飞虱图像特征的过完备字典进行更新构造,结合OMP算法对原始输入图像的特征信号进行稀疏表示;最后,通过求解输入图像的重构误差对昆虫图像进行分类。在相同的试验条件下,与传统的图像分类算法(SVM、BP神经网络)进行比较。实验结果表明,该文提出的基于K-SVD和OMP算法的稻飞虱图像稀疏表示分类方法可对稻飞虱与非稻飞虱进行快速准确的分类,分类速度达到6.0帧/s,平均分类精度达到93.7%。与SVM和BP神经网络相比,分类速度分别提高了5和5.5帧/s;分类精度分别提高了15.7和28.2个百分点,为稻飞虱的防治预警工作提供了信息与技术支持。

    Abstract:

    Abstract: Rice is a staple crop in China. Controlling rice pests and diseases is important to safeguard its sustainable production, in which classification and identification of rice planthoppers plays an important part. While there has been an increased interest over the past few years in image-classification of the rice planthoppers, currently, this method is not automatic and susceptible to faulty recognition and low efficiency. To circumvent these shortcomings, a sparse-representation image-based classification method was proposed based on the K-SVD and OMP. A field insect collection device was used to collect insect images, in which a high-pressure mercury lamp was used to attract the insects to the collection workbench based on their phototaxis characteristics. A PLC was mounted on the top of the three-phase adjustment device to control high-definition industrial cameras to take images of the insects. The images were then segmented using the maximum inter-class variance method (OTSU threshold segmentation method) to extract the image of the insects. Overall, 1186 single insect images were obtained from the field experiment. Two insect characteristics were selected as initial over-complete dictionary and they were extracted from 500 images. K-SVD dictionary learning algorithm was used to iteratively update the over-complete dictionary of the rice planthopper image features and the number of iterations was set at 500. 200 images of the rice planthoppers were selected as the original input comparing images, and 150 and 50 images of the rice and non-rice planthopper were used as testing and verifying sets respectively. The appropriate sparsity is an important factor for improving efficiency and accuracy, and the errors of the testing images was calculated from the OMP algorithm when the sparsity was 6, 12 and 18 respectively. Comprehensive analysis of the errors and convergence rate showed that the optimal sparsity was 12. Finally, classification features of the rice and non-rice planthoppers were sparsely reconstructed in line with the updated reconstruction dictionary, and the reconstruction error was calculated for the sparsity of 12. Hundreds of experiments revealed that the classification threshold of 0.1 was quick and effective to classify the rice and non-rice planthopper. Using the same experimental data, we compared the proposed method with the traditional image-based classification algorithms, SVM and BP neural network. The results showed that the accuracy and classification speed were 65.5% and 0.5 frames/s respectively for SVM, and 78.0% and 1.0 frames/s respectively for the BP neural network. In contrast, the proposed method improved the accuracy to 93.7% and the classification speed to 6.0 frames/s

    参考文献
    [1]蒋敏, 李秀彬, 辛良杰, 等. 南方水稻复种指数变化对国家粮食产能的影响及其政策启示[J]. 地理学报, 2019, 74(1): 32—43. Jiang Min, Li Xiubin, Xin Liangjie, et al. The impact of paddy rice multiple cropping index changes in Southern China on national grain producttion capacity and its policy implications[J]. Acta Geographica Sinica, 2019, 74(1): 32—43. (in Chinese with English abstract)
    [2]程家安, 祝增荣. 中国水稻病虫害治理60年:问题与对策[J]. 植物保护学报, 2017, 44(6): 885—895. Cheng Jiaan, Zhu Zengrong. Development of rice pest management in the past 60 years in China: problems and strategies[J]. Journal of Plant Protection, 2017, 44(6): 885—895.(in Chinese with English abstract)
    [3]何艳, 严田蓉, 郭长春, 等.秸秆还田与栽插方式对水稻根系生长及产量的影响[J].农业工程学报, 2019, 35(7): 105—114. He Yan, Yan Tianrong, Guo Changchun, et al. Effect of methods of straw returning and planting on root growth and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering,(Transactions of the CSAE) 2019, 35(7): 105—114. (in Chinese with English abstract)
    [4]Sarin W, Ithipan M. Mobile-device based image processing for rice brown planthopper classification and outbreak monitoring[J]. Applied Engineering in Agriculture, 2019, 35(1): 15—21. (in Chinese with English abstract)
    [5]林相泽, 朱赛华, 张俊媛, 等. 基于迁移学习和Mask R-CNN的稻飞虱图像分类方法[J]. 农业机械学报, 2019, 50(7): 201—207. Lin Xiangze, Zhu Saihua, Zhang Junyuan, et al. Research on rice planthopper image classification via transfer learning and mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 201—207. (in Chinese with English abstract)
    [6]Tsung Han Tsai, Ting Yu Lee, Po Hsun Chen, et al. The ROI of rice planthopper by image processing[C]. International Conference on Applied System Innovation IEEE, 2017, 126—129.
    [7]Yue Hongwei, Man Hong, Wang Keqiang, et al. Rice planthopper segmentation based on multi-feature fusion[C]. 2016 IEEE International Conference on Signal and Image Processing (ICSIP), Beijing, 2016, 6: 16—21.
    [8]桑园. 动态稀疏表示方法在非接触式指纹图像识别中的应用[J]. 科学技术与工程, 2018, 18( 21) : 258—263. Sang Yuan. Application of dynamic sparse representation in non-contact fingerprint image recognition[J]. Science Technology and Engineering,2018, 18( 21) : 258—263. (in Chinese with English abstract)
    [9]王林, 邓芳娟. 改进的加权稀疏表示人脸识别算法[J]. 计算机系统应用, 2018, 27(6): 134—139. Wang Lin, Deng Fangjuan. Improved weighted sparse representation algorithm for face recognition[J]. Computer Systems & Applications, 2018, 27(6): 134—139. (in Chinese with English abstract)
    [10]赵海峰, 鲁毓苗, 陆明, 等. 基于快速稀疏表示的医学图像压缩[J]. 计算机工程, 2014, 40(4): 233—236. Zhao Haifeng, Lu Yumiao, Lu Ming, et al. Medical image compression based on fast sparse representation[J]. Computer Engineering, 2014, 40(4): 233—236. (in Chinese with English abstract)
    [11]王琳,陈志国,傅毅.基于多任务结构稀疏表示的跟踪算法[J].传感器与微系统, 2018, 37(10):140—142, 146. Wang Lin, Chen Zhiguo, Fu Yi. Tracking algorithm based on multi-task structure sparse representation[J]. Transducer and Microsystem Technologies, 2018, 37(10): 140—142, 146. (in Chinese with English abstract)
    [12]刘德营, 王家亮, 林相泽, 等. 基于卷积神经网络的白背飞虱识别方法[J]. 农业机械学报, 2018, 49(5): 51—56. Liu Deying, Wang Jiangliang, Lin xiangze, et al. Automatic identification method for sogatella furcfera based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 51—56. (in Chinese with English abstract)
    [13]谢堂胜, 刘德营, 陈京, 等. 白背飞虱智能识别技术研究[J]. 南京农业大学学报, 2016, 39(3): 519—526. Xie Tangsheng, Liu deying, Chen Jing, et al. Automatic identification of sogatella furcifera[J]. Journal of Nanjing Agricultural University, 2016, 39(3): 519—526. (in Chinese with English abstract)
    [14]易三莉, 张桂芳, 陈菊. 基于信息熵的OTSU二次分割算法[J]. 昆明理工大学学报:自然科学版, 2019, 44(2): 56—62. Yi Sanli, Zhang Guifang, Chen Ju. OTSU secondary segmentation algorithm based on information entropy[J]. Journal of Kunming University of Science and Technology Natural Science, 2019, 44(2): 56—62. (in Chinese with English abstract)
    [15]Pelin Görgel, Ahmet Simsek. Face recognition via deep stacked denoising sparse autoencoders (DSDSA)[J]. Applied Mathematics and Computation, 2019, 355: 325—342.
    [16]黄宏图, 毕笃彦, 侯志强, 等. 基于稀疏表示的视频目标跟踪研究综述[J]. 自动化学报, 2018, 44(10): 1747—1763. Huang Hongtu, Bi Duyan, Hou Zhiqiang, et al. Research of sparse representation-based visual object tracking: A survey[J]. Acta Automatica Sinica, 2018, 44(10): 1747—1763. (in Chinese with English abstract)
    [17]石曼曼, 李雷. 一种改进的OMP算法及其在图像重构上的应用[J]. 计算机技术与发展, 2018, 28(2): 94—97. Shi Manman, Li Lei. An improved orthogonal matching pursuit algorithm and its application in image reconstruction[J]. Computer Technology and Development, 2018, 28(2): 94—97. (in Chinese with English abstract)
    [18]张文颢, 李永健, 张卫华. 基于K-奇异值分解和层次化分块正交匹配算法的滚动轴承故障诊断[J]. 中国机械工程, 2019, 30(4): 406—412. Zhang Wenhao, Li Yongjian, Zhang Weihua. Bearing fault diagnodis based on K-SVD and HBW-OOMP[J]. China Mechanical Engineering, 2019, 30(4): 406—412. (in Chinese with English abstract)
    [19]石昊苏. OMP算法参数对超声图像重构质量的实证分析[J]. 计算机与数字工程, 2018, 46(5): 1020—1024. Shi Haosu. An empirical analysis of the quality of ultrasound image reconstruction based on OMP algorithm parameters[J]. Computer & Digital Engineering, 2018, 46(5): 1020—1024. (in Chinese with English abstract)
    [20]白志亮, 陈世利, 贾乐成, 等. 基于贪婪算法的汽轮机叶轮相控阵信号压缩感知[J]. 机械工程学报, 2018, 54(18): 33—41. Bai Zhiliang, Chen Shili, Jia Lecheng, et al. Compressed sensing of ultrasonic phased array signal in turbine disc rims inspection based on greedy algorithms[J]. Journal of Mechanical Engineering, 2018, 54(18): 33—41. (in Chinese with English abstract)
    [21]薛晨杰, 林婷薇. 基于异常检测的K-means改进算法研究[J]. 软件导刊, 2019, 18(4):74—78. Xue Chenjie, Lin Tingwei. Improved K-means algorithm based on anomaly detection[J]. Software Guide, 2019, 18(4):74—78.
    [22]Victor M Garcia-Molla,Pablo San Juan, Tuomas Virtanen,et al. Generalization of the K-SVD algorithm for minimization of β-divergence[J]. Digital Signal Processing, 2019, 92, 47—53.
    [23]王佳境, 吴建宁, 凌雲, 等. 基于K-SVD的最大似然稀疏表示体域网动作分类算法[J]. 计算机系统应用, 2018, 27(2): 144—150. Wang Jiajing, Wu Jianning, Ling Yun, et al. Maximum likelihood sparse representation activity recognition algorithm based on K-SVD in body sensor networks[J]. Computer system & Applications, 2018, 27(2): 144—150. (in Chinese with English abstract)
    [24]陆静,王家亮,朱赛华,等.基于特征优化的稻飞虱图像分类[J].南京农业大学学报, 2019, 42(4): 767—774. Lu Jing, Wang Jialiang, Zhu Saihua, et al. Classification of rice planthoppers image based on feature optimition[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 767—774.
    [25]邹修国, 丁为民, 刘德营, 等. 基于4种不变矩和BP神经网络的稻飞虱分类[J]. 农业工程学报, 2013, 29(18): 171—178. Zou Xiuguo, Ding Weimin, Liu Deying, et al. Classification of rice planthopper based on invariant moments and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 171—178. (in Chinese with English abstract)
    [26]赵三琴, 丁为民, 刘德营. 基于傅里叶描述子的稻飞虱形状识别[J]. 农业机械学报, 2009, 40(8): 181—184, 160. Zhao Sanqin, Ding Weiming, Liu Deying. Rice hopper shape recognition based on Fourier descriptors [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 181—184, 160. (in Chinese with English abstract)
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林相泽,张俊媛,朱赛华,刘德营.基于K-SVD和正交匹配追踪稀疏表示的稻飞虱图像分类方法[J].农业工程学报,2019,35(19):216-222. DOI:10.11975/j. issn.1002-6819.2019.19.026

Lin Xiangze, Zhang Junyuan, Zhu Saihua, Liu Deying. Sparse representation classification method of rice planthopper image based on K-SVD and orthogonal matching pursuit algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019,35(19):216-222. DOI:10.11975/j. issn.1002-6819.2019.19.026

复制
分享
文章指标
  • 点击次数:1120
  • 下载次数: 660
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-04-24
  • 最后修改日期:2019-09-27
  • 在线发布日期: 2019-10-23
文章二维码
您是第39822223位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!