基于工质相变换热的动力电池冷热双向循环热管理系统
DOI:
作者:
作者单位:

河南科技大学

作者简介:

通讯作者:

中图分类号:

TB61

基金项目:

国家自然科学基金资助项目(No.U1304521, 51706060, 51876055), 河南科技大学创新团队资助(No.2015XTD004)


Cooling or heating two-way thermal management of power battery based on working fluid phase change
Author:
Affiliation:

1.Henan university of science and technology;2.School of Civil Engineering, Henan University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于工质相变换热和无泵循环思路,提出了一种动力电池冷热双向热管理系统。以某款三元锂电池为研究对象,试验测试了冷热双向循环热管理系统的散热和加热工况。结果表明:该系统能实现电池箱低温工况加热与高温工况散热的运行切换管理。散热工况下,换热板采用4根竖管比单根蛇形管的散热能力强;冷凝器侧强制风冷散热与自然对流散热相比,能将系统一换热功率提高10%~44.2%,系统二换热功率提高20%~48.6%;电池箱温度为60℃时,自然对流散热系统换热板的最大温差小于2 ℃,强制对流散热系统换热板的最大温差小于1℃;在电池初始温度25℃时,1C、2C、3C放电倍率下,放电结束强制对流散热在能将8块电池的平均温度分别降低2.1 、3.9 、4.7 ℃。加热工况下,多组试验电池箱的升温效果一致性较好。考虑车辆行驶中换热板的倾斜影响,受制于工质的流量分配,散热工况时温度均匀性优于加热工况。

    Abstract:

    National policies promote the rapid development of electric vehicles, agricultural vehicles are becoming more and more electric. In general, when the battery is used as a power supply, a lot of heat will be generated. In addition to the more complex working conditions of agricultural vehicles and the compact layout of battery packs, it is inevitable to cause the thermal accumulation of batteries, resulting in the battery temperature exceeding the optimal operating temperature range and damaging the battery. At this time, an appropriate thermal management strategy is needed to control the battery temperature and make it work within a reasonable temperature range. Therefore, based on the principle of phase change heat transfer and pump-free circulation, a power battery thermal management system with cooling or heating functions is presented. Taking ternary lithium batteries as the research object, the two-way working modes of thermal management system were tested under cooling or heating conditions. Under the cooling condition,The cooling capacity of the two thermal management systems under natural convection cooling and forced convection cooling conditions was studied when the initial temperature of the battery box was 40, 50, 60 and 70 ℃. And for the thermal management system two, the influence of the inclination angle on its heat dissipation and temperature uniformity was studied. Under the heating conditions, the heating capacity of two thermal management systems was studied, and then for the thermal management system two, the initial temperature of different batteries and the heat exchange uniformity of the thermal management system two were studied. The results show that the system can realize the operation switching management of cooling and heating two-way modes based on high or low temperatures. In other words, the switch of thermal management can be realized by controlling the opening and closing of the valve at the right temperature. The test results show that, under the cooling condition, thermal management system two provides better heat transfer, It can also be interpreted as the heat dissipation capacity of the heat exchanger plate with four vertical tubes is stronger than that of the single serpentine tube, compared with natural convection, forced convection on the condenser side can increase the heat transfer power of system 1 by 10% ~ 44.2%, and system 2 by 20% ~ 48.6%; when the temperature of the battery box is 60℃, the maximum temperature difference of the heat exchange plate of the natural convection heat dissipation system is less than 2℃, and the maximum temperature difference of the heat exchange plate of the forced convection heat dissipation system is less than 1℃; at an initial battery temperature of 25°C and a discharge rate of 1C, 2C, and 3C, forced convection heat dissipation at the end of discharge can reduce the average temperature of the battery box by 2.1, 3.9, and 4.7°C, respectively. Under the heating condition, the power of the battery box in many groups of experiments is consistent. Considering the tilting effect of the heat exchanger plate in the vehicle driving, it is restricted by the flow distribution of the working fluid, and the temperature uniformity is better than the heating condition in the heat dissipation condition.

    参考文献
    相似文献
    引证文献
引用本文

梁坤峰,米国强,徐红玉,董彬.基于工质相变换热的动力电池冷热双向循环热管理系统[J].农业工程学报,,(). liangkunfeng, Mi Guoqiang, Xu Hongyu, Dong Bin. Cooling or heating two-way thermal management of power battery based on working fluid phase change[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),,().

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-04
  • 最后修改日期:2020-07-28
  • 录用日期:2020-08-05
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司