Abstract:Mechanical precision seed metering device is widely used in precision seeding technology because of its simple structure and uniform seed metering. Seed filling process is the key link of the whole operation process of seed metering device. The precision metering device is mainly divided into internal filling, side filling, external filling, and the combination of side filling and external filling according to the seed filling mode. In the operation process, the internal filling mode mainly completes the seeding operation through the process of type-hole filling and gravity clearing, and the seed motion parameters close to the type-hole directly affect the seeding quality of the machine. The rotary type-hole cotton precision seed metering device is a kind of mechanical precision seed metering device. In order to solve the problem of missing seed in the process of filling, the influence of the motion parameters of rotary type-hole cotton precision seed metering device on the filling performance by establishing the kinematic model of the seed filling process in this paper. Using the discrete element simulation software to analyze the speed change trend of cotton seed falling into the type-hole and the influence of seed wheel vibration frequency on seed group disturbance. Taking the vibration frequency of seed wheel, vibration offset angle of seed wheel and rotating speed of metering device as the test factors, and taking the qualified rate of seed spacing , replaying rate and missing rate as the test indexes, three factors and five levels of positive traffic rotation combined test are carried out to explore the influence of each factor on seed metering performance. Design expert 8.0.6 software is used to analyze the test results and optimize the regression model. Single factor simulation test results show that the instantaneous speed of cotton seed increases with the increase of the rotating speed of the seed wheel, the instantaneous speed of the cotton seed is less than that of the seed wheel when it is filled into the type-hole, the cotton seeds with lower relative speed have better filling effect. When the vibration frequency of the seed wheel is 7 Hz, the average value of the normal force of the seed group is the smallest, which is 0.75 N, at this time, the internal friction of the seed goup is the smallest, the cotton seed is easy to be taken by the type-hole, and the seed filling performance of the seed metering device is improved. The simulation results of quadratic regression general rotation combination show that when the rotating speed of the seed metering device is 12.59 r/min, the vibration offset angle of seed wheel is 8.06° and the vibration frequency of seed wheel is 6.08 Hz, the qualified rate of seed spacing reaches the maximum of 94.5%, and the leak seeding rate is 2.9%, the repaly rate is 3.3%. On this basis, the platform validation test was carried out with Xinluzao No.61 cotton seed as the test object. The test results showed thatwhen the rotating speed of the seed metering device was 12 r/min, the maximum qualified rate of the seed spacing was 94.65%, the error between the rotating speed of the seed metering device and the simulation test is 5.4%, which verifies the accuracy of the simulation results. This study can provide a reference for the structural optimization of the key components of the rotary type-hole cotton precision metering device.