考虑收缩的爆炒热/质传递过程数值模拟
DOI:
作者:
作者单位:

1.贵州大学酿酒与食品工程学院;2.江南大学食品学院;3.贵州汉食精工科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(31660449)、国家自然科学基金(31860443)、贵州省科技计划(黔科合支撑[2017]2556)、 贵州省科技计划(黔科合农G字[2014]4016号)、国家重点研发项目(2018YFD0401200)


Numerical simulation of heat and mass transfer during Chinese stir-frying considering shrinkage
Author:
Affiliation:

1.Guizhou University, School of Liquor and Food Engineering;2.Jiangnan University, School of Food Science and Technology;3.Guizhou Han Shi Jing Gong Technology Co.,ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为研究爆炒中食品多孔介质热/质传递机制及烹饪成熟和品质变化规律,考虑收缩-水分损失关系,基于多孔介质理论,结合傅里叶定律、牛顿冷却定律和达西定律,构建了爆炒中有蒸发、考虑收缩的食品含湿非饱和多孔介质热/质传递数学模型,开展了爆炒数值模拟。考虑收缩后模拟值与实测温度历史(LSTD=4.40℃)、平均含水率(LSTD=1.42%)和体积收缩率(LSTD=1.05%)吻合更为良好。模拟分析了爆炒热/质传递对颗粒表面蒸发、收缩、内部压力、水分和温度分布的影响机理及火候控制手段的作用,结果表明:爆炒强对流传热使颗粒蒸发剧烈造成水分损失;收缩主要由水分损失引起,可以增大传热效率并影响颗粒内部压力变化,由成熟值理论研判,蒸发收缩对烹饪成熟起到促进作用,并有利于提高烹饪品质,是爆炒技术优势的一部分;火候控制手段通过改变颗粒特征尺寸、能量传递速率和流体-颗粒的换热时间/接触面积对颗粒成熟时间和含水率等烹饪品质产生极显著(P<0.01)影响。

    Abstract:

    To promote the development, automation, and standardization of Chinese cuisine, it is necessary to carry out a systematic and in-depth study so as to obtain the inherent principles of heat transfer and the corresponding quality changes during the cooking process. Chinese stir-frying is one of the most distinctive and widely used cooking method, and numerical simulation is the only way to study the heat transfer process of food particles during the Chinese stir-frying. In order to study the mechanism of heat and mass transfer and the changes of maturity and quality of food particles during the Chinese cuisine process, a heat and mass transfer model including multiphase coupling phase transition and shrinkage was developed to simulate the Chinese stir-frying process of food hygroscopic porous medium based on the porous media theory, Fourier's law, Newton's cooling law, and Darcy's law. The non-equilibrium evaporation formulation, shrinkage formulation, energy, momentum and mass conservations of water, and gas governing equations were considered in this model and it was finally solved using finite element method. The temperature history, moisture content, and volumetric shrinkage rate of the Chinese stir-fried pork loin were used as comparations to validate the model accuracy. The results indicated that the accuracy and robust properties of this model was greatly increased after considering the shrinking process. To reveal the mechanisms of heat and mass transfer inside food particle, water evaporation rate of particle surface, volumetric shrinkage rate, pressure variations, moisture content and temperature distributions were all simulated for Chinese stir-frying process. The simulation results showed that the water loss, which was induced by strong convection heat transfer, was the main reason for shrinkage. The moisture loss rate and volumetric shrinkage rate were increased by the surface evaporation rate, and the particle internal pressure was affected by volumetric shrinkage.Since the volumetric shrinkage rate was similar to water loss rate, the moisture content and shrinkage were associated as an important indicator for evaluating cooking quality of food particles. Additionally, the heat transfer efficiency of particles was greatly enhanced by shrinkage because of the increasing surface area to volume ratio. The shrinkage could be used to improve the overall moisture content of food particles if evaluated from the perspective of cooking quality optimization. Combined with the maturity value theory, the effect of controlling methods of “Huohou” on the maturity and quality of food particle were further explored in this study. The simulation results indicated that the increase of the efficiency of heat and mass transfer and internal heating rate, and the decrease of average moisture content were mainly affected by the finer cutting technique of food particles, the higher preheat oil temperature, and the more vigorous stirring operations. The food particles could reach its maturity values before the average moisture content rapidly decreased under the appropriate “Huohou” controlling. Thus, the average time of food particles reaching cooking maturity termination was significantly decreased. “Huohou” controlling exhibited a significant (P <0.01) effect on the cooking quality and could bring significant advantages for obtaining food particles with better cooking quality.

    参考文献
    相似文献
    引证文献
引用本文

谢乐,邓力,李静鹏,曾雪峰,闫勇,石宇,苏婕妤,廖小梅.考虑收缩的爆炒热/质传递过程数值模拟[J].农业工程学报,,(). Xie le, Deng Li, Li Jingpeng, Zeng Xuefeng, Yan Yong, Shi yu, Su Jieyu, Liao Xiaomei. Numerical simulation of heat and mass transfer during Chinese stir-frying considering shrinkage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),,().

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-25
  • 最后修改日期:2020-09-27
  • 录用日期:2020-10-21
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司