小型活体水产运输箱电解水增氧装置设计与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省特色农产品(鳗鱼、茶枝柑)智能装备关键技术研究与推广(粤财科教〔2019〕170号);广东省教育厅青年人才类项目(2018KQNCX021)


Design and test of electrolytic water oxygen increasing device for small transport box of living aquatic products
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水产长距离运输保证鲜活需要保持水产原生存环境的压力、水质、溶氧度等条件,其中溶氧度直接关系水产的存活,因此增氧装置的设计成为活体水产运输的关键技术之一。为了解决电解水增氧方式能耗大、难以小型化的问题,该研究设计了适用于小型水产运输箱的电解水增氧装置。首先根据计算流体力学软件仿真计算结果设计了装置中可在正负电极间产生恒稳均匀流场的整流结构参数;然后通过试验探索水溶氧和装置总能耗在电解电压与水交换流量影响下的关系。试验结果表明:在容积为8×10-3 m3的箱体内,采用直流电解,当电解电压为37 V、水交换流量为6.97×10-5 m3/s时,总能耗最低为39.39 kJ。该装置设计和试验结果可为电解水增氧方法在水产运输和养殖中的实际应用提供了依据。

    Abstract:

    Abstract: Fresh aquatic products are more and more favored by the market, with the continuous expansion of aquatic trade, living aquatic transportation becomes more and more important. How to improve the survival rate of living aquatic transportation and reduce the cost of living aquatic transportation is an urgent problem to be solved. To ensure the survival of aquatic transport process, it is necessary to maintain the original aquatic survival environment, such as pressure, water quality, dissolved oxygen degree and so on. The dissolved oxygen degree is the key parameter for the survival of aquatic products, then the oxygen increasing device becomes the key technology for small transport box. In order to develop a transportation device for living aquatic products that can continuously increase oxygen, consume less power, have small size, use flexibly and conveniently, a electrolytic water oxygen increasing device was designed for small living aquatic products transportation box. Firstly, a stable constant flow field needed to be created between positive and negative electrodes in the pipeline. Therefore, the structure of transport box and oxygen increasing device were designed, and the structure in the electrolytic water oxygen increasing device which can generate steady and uniform flow field was designed by computational fluid dynamics simulation software. The structural parameters of the flow straightening unit were design with different variables. The control variable method was used to determine range of the parameter, that is, the three variables were respectively controlled unchanged and the other variable was adjusted from small to large for the simulation test. The parameters selection via simulation results was convenient for efficient exchange of water and oxygen. Then, hypoxic water was prepared and the initial oxygen-solubility of hypoxic water was tested by a dissolved oxygen meter. The concrete experimental method was that the electrolytic water oxygen increasing device was placed at the bottom of the sealed box and seal the box body, then adjusting the electrolytic voltage and circulating pump flow rate and recording the dissolved oxygen degree, electrolytic voltage and electrolytic current every 5 minutes until the dissolved oxygen degree of the water reaches 100%. Surface of the relation between oxygen increasing rate and electrolytic voltage under different flow rate were drawn, and the influences of the bivariate of electrolytic voltage and water exchange flow rate were explored. The test results indicated that the lowest total energy consumption was 39.39 kJ when the electrolytic voltage was 37 V and the water exchange flow rate was 6.97×10-5 m3/s for the box volume of 8×10-3 m3 using direct current electrolysis. In the process of ensuring continuous oxygen increasing, three working modes as follows could be realized through controlling the electrolytic voltage and water exchange flow rate. Maximum water exchange flow rate and electrolytic voltage could realize rapid oxygen increasing mode of large amount of oxygen bubble overflow; The local saturation oxygen increasing rate state parameter was adopted to realize the bubble-free oxygen increasing mode; When there was only a small amount of aquatic products or standby, the lowest combined parameter of energy consumption was adopted to realize the low energy consumption mode. The design method and test results for the electrolytic water oxygen increasing device in this study can provide a basis for the application of electrolytic water oxygen increasing method in living aquatic transportation and aquaculture.

    参考文献
    相似文献
    引证文献
引用本文

莫嘉嗣,闫国琦,夏俊杰,金莫辉,魏德仙.小型活体水产运输箱电解水增氧装置设计与试验[J].农业工程学报,2020,36(18):26-33. DOI:10.11975/j. issn.1002-6819.2020.18.004

Mo Jiasi, Yan Guoqi, Xia Junjie, Jin Mohui, Wei Dexian. Design and test of electrolytic water oxygen increasing device for small transport box of living aquatic products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2020,36(18):26-33. DOI:10.11975/j. issn.1002-6819.2020.18.004

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-20
  • 最后修改日期:2020-09-07
  • 录用日期:
  • 在线发布日期: 2020-10-09
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司