Abstract:Abstract: Container seedling raising of citrus has the advantages of fast survival and high survival rate after transplanting, and is becoming the main way of citrus cultivation. At present, the level of mechanization of vitrus container seedling cultivation in China is very low, mainly relying on manual operation, especially seedling pot filling, with high labor intensity and low production efficiency, which has become the main obstacle of industrial development. In order to sole this problem, a mechanical solution of filling and transporting 105 pots at one time was proposed. The machine consists of two independent parts: filling device and transporting device. The filling device included frame, scraping mechanism and driving mechanism; the transporting device included frame, power system, driving mechanism and steering mechanism. Before filling, he unlocking device was set to unlocking state. Then, the operating rod of the linkage mechanism was moved to the unlocking device and locked. At the same time, the flaps of the linkage mechanism moved to the horizontal filling state. Secondly, opened the seedling pots, putted the pot into the compartment in turn and covered with covering plate. Thirdly, started the transporting device, and moved the transporting device to the filling position with the guidance of the guiding wheel on the transporting device and guiding rail on the filling device. Then, turned on the control switch, the filling and transporting machine started, the substrate was scraped into the seeding pots after separating by the splitter plate. After filling, started the transporting device and moved it to unloading position. Unlocked the unlocking device, and moveed the operating rod of the linkage mechanism to the unloading state. The flaps moved to the vertical position under the action of the linkage mechanism, and the seedling pots in the compartments falled under the action of gravity. The optimal offset and height of splitter plate were determined based on the analysis of the substrate flow process by EDEM software, the scheme of the unloading part was designed, the length of each rod was calculated, the strength of the frame was analyzed, and the parameters of the frame were determined. Based on this, the control circuit was designed and the test prototype was made. The experimental results showed that the prototype machine ran stable in 10 tests, the mean substrate filling amount was 330.5 kg, the filling number of seedling pots was 105, the filling time was about 60 s under the setting speed of mixer,, the speed of the transport device was 1.2 m/s, and the seedling pots were unloaded and aligned well. The maximum average filling amount of single seedling port in 10 tests was 3.23 kg, which was 2.5% higher than average filling amount, and the minimum average filling amount of single seedling port in 10 tests was 3.03 kg, which was 3.8% lower than average filling amount. The designed machine can provide reference for the development and optimization of the citrus seedling pot filling and transporting machine.