近红外光谱式联合收割机谷物蛋白质含量检测系统设计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国农科院重大平台推进计划(Y2017PT41);中国农业科学院科技创新工程(穗粒类收获机械创新团队)


Design of near-infrared spectral grain protein detection system for combine-harvesters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现谷物联合收割机收获时实时在线检测谷物的蛋白质含量并记录采样地理位置信息,研发了一种基于近红外光谱原理的谷物蛋白质含量在线检测系统,系统主要由近红外光谱传感器模块、螺旋采样输送机构、控制模块、GPS/北斗定位模块、工控显现一体机等组成。谷物联合收割机近红外光谱式蛋白质含量在线检测系统工作时,当联合收割机出粮搅笼排出的谷物经过螺旋采样输送机构,采样机构的步进电机根据检测速率要求由控制器控制并间断进行谷物输送,控制器同时控制近红外光谱传感器在步进电机停止转动时进行光谱采样,谷物的近红外光谱和GPS/北斗定位模块位置信号等数据由RS485总线传输至上位机。编制了近红外传感器和采样机构等的控制与数据处理分析软件,经谷物蛋白质含量预测模型处理后,将谷物蛋白质、采样位置信息等实时显示在终端上并保存。为了验证谷物蛋白质含量预测模型及在线检测系统的性能,开展了室内标定和田间系统动态测试试验,小麦蛋白质含量预测模型的决定系数R2为0.865,绝对误差范围为-0.96%~1.22%,相对误差范围在-7.30%~9.53%,预测标准差值为0.638%;水稻蛋白质含量预测模型的决定系数R2为0.853,绝对误差范围为-0.60%~1.00%,相对误差范围为-8.47%~9.71%,预测标准差值为0.516%。系统田间测试试验表明,小麦蛋白质含量的最大相对误差为-6.69%,水稻蛋白质含量的最大相对误差为-8.02%,采样分析时间间隔对系统测试精度的影响不显著,系统稳定性和检测精度达到田间谷物蛋白质在线检测需要,为精准农业作业提供了科学依据。

    Abstract:

    An in-line detection system of grain protein content was developed in this study, in order to realize the real-time identification and record the sampling geographical location information in a novel harvester combined with near-infrared spectroscopy during grain harvesting. The detection system was mainly composed of a near-infrared spectral sensor module, spiral sampling and conveying mechanism, control module, GPS/Beidou positioning module, and industrial display integrator. The specific working procedure was followed for the in-line detection system in a near-infrared spectroscopy on combine harvester. The grain first discharged from the outlet of a combine-harvester through the spiral sampling and conveying mechanism. A PID controller was used to adjust the stepper motor of sampling mechanism, according to the requirements of detection rate, thereby to realize the intermittent grain transmission. A near-infrared spectral sensor was also adjusted to capture the spectrum, when the stepper motor stopped turning. A RS485 bus was used for data transmission to host computer, where the obtained data included the grain near-infrared spectrum, and the positioning signal of GPS/Beidou positioning module. A data processing software was developed to control the near-infrared sensor and sampling mechanism. After data post-processing in the grain protein prediction model, the information of grain protein and sampling location was in situ displayed, and storage for later use. An indoor calibration, and a field dynamic test were carried out to verify the performance of prediction model for grain protein content and online detection system. In the prediction model of wheat protein content, the decision coefficient was 0.865, the absolute error range was −0.96% to 1.22%, the relative error range was −7.30% to 9.53%, and the Root Mean Square Error of Prediction (RMSEP) was 0.638%. In the prediction model of rice protein content, the decision coefficient was 0.853, the absolute error range was −0.60% to 1.00%, the relative error range was −8.47% to 9.71%, and the RMSEP was 0.516%. In the dynamic field test, the maximum relative error of wheat protein content was −6.69%, whereas, the maximum error of rice protein content was −8.02%. It infers that the sampling and analysis interval have no significantly influence on the detection system, where the system stability and detection accuracy meet the need of grain protein online detection in the field. The finding can provide a scientific basis for precision agricultural operation.

    参考文献
    相似文献
    引证文献
引用本文

张敏,吴崇友,陈旭,朱道静,金梅,王刚.近红外光谱式联合收割机谷物蛋白质含量检测系统设计[J].农业工程学报,2021,37(1):36-43. DOI:10.11975/j. issn.1002-6819.2021.01.005

Zhang Min, Wu Chongyou, Chen Xu, Zhu Daojing, Jin Mei, Wang Gang. Design of near-infrared spectral grain protein detection system for combine-harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(1):36-43. DOI:10.11975/j. issn.1002-6819.2021.01.005

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-06
  • 最后修改日期:2020-12-23
  • 录用日期:
  • 在线发布日期: 2021-01-20
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司