5HP-25型粮食干燥机设计与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(31671783,31371871);广东省科技计划项目(2014B020207001)


Design and experimental study of 5HP-25 type grain dryer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高干燥系统的能量利用效率,增强干燥机的通用性、可靠性、作业效率和年利用率,该研究围绕增大干燥动力系数和工艺能力指数,基于粮食的物性特征,从干燥工艺方式、机械结构参数和运动参数间的内在关系入手,把几何因子和运动参数有机结合,揭示了粮食在干燥机内流动特性;按照引风降压,连续闪蒸降温,强化传热传质,自适应排粮的设计思想,研制了一款粮食通用的干燥机,实现了粮食在干燥机内连续流动过程中,自发地改变流态、连续回转换位,强化了传热传质,改善了干燥的均匀性。设计的升角为6°的变截面角状盒,与传统的横流方法相比,可使干燥动力系数增大2~4倍,干燥稻谷时的爆腰增率可控制在1%以内,发芽势提高76%以上,发芽率达到95%;设计往复式差速排粮机构,实现了自适应无损排粮,有效解决了粮食架桥、堵塞问题,避免了粮种的机械损伤。设计的5HP-25型粮食干燥机,实际应用效果显示,在粮食平均干燥强度为1.37~2.70 %/h的条件下,干燥水分单位热耗为2 900~4 300kJ/kg,与国标7 400 kJ/kg相比,降低了单位热耗量。研究结果为实现优质、高效、节能干燥工艺及装备设计提供了参考。

    Abstract:

    This study aims to enhance the operating efficiency and annual utilization rate in the mechanized drying of grains. Meanwhile, their versatility and reliability need to be improved. In order to strengthen the drying process, it is necessary to increase the dynamic coefficient, rather than the processing power only. A systematic investigation was made on the relationship between the geometric structural parameters and the motion parameters, in order to increase the drying dynamic coefficient for the non-destructive drying. The effects of geometric factors on grain flow characteristics were revealed using the combined geometric structure factors and motion parameters. Since the downward flow of grains depended mainly on the gravity of grains, the geometric structural parameters were used to express the natural flow state in the drying chamber. In addition, the flow speed of grain at a certain position was proportional to the speed of grain discharge. In the continuous flow process, there was an equal amount of absolutely dry matter flowing through any cross section in the drying chamber at any time, where the velocity ratio was equal to the inverse area ratio. A general-purpose grain dryer was developed, where the induced air was used to reduce pressure, while the partial flash evaporation was used to decrease the grain temperature, and a self-adaptive differential reciprocating grain discharging device was designed to strengthen the heat and mass transfer in the drying section. The dryer was widely used for many kinds of granular grains and seeds, which achieved high-quality, high-efficiency, and low-temperature drying. The heat and mass transfer were strengthened, because the grain changed the flow state spontaneously and rotated continuously during the continuous flow in the dryer. The drying uniformity was improved, further to avoid local overheating damage caused by single-side heating during the grain drying process. The variable cross-section angle box with the angle of 6° could increas the drying dynamic coefficient by 2-4 times, compared with the traditional cross flow. The temperature of grain was below 35℃, indicating lower than the glass transition temperature of grain. The dried rice seeds remained intact with high activity. The increased rate of crack and the moisture unevenness both were less than 1%. The germination potential increased by 76% than before, and the germination rate was close to 95%. The drying quality was significantly improved, compared with the concurrent flow drying. A dislocated and differential reciprocating mechanism was designed to achieve the adaptive and non-destructive grain discharge, indicating an effective bridging and blocking operation to avoid mechanical damage of grains. In the application of designed 5HP-25 type grain dryer, an optimal combination of parameters was obtained, where the average drying intensity of grain was 1.37%/h-2.70%/h, and the per-unit heat consumption of drying was 2 900-4 300 kJ/kg. Compared with the national standard 7 400 kJ/kg, the effect of energy saving was remarkable. The finding can provide a sound reference to design a high quality, high-efficiency, and energy-saving equipment for the grain drying process.

    参考文献
    相似文献
    引证文献
引用本文

骆恒光,李长友,张永博.5HP-25型粮食干燥机设计与试验[J].农业工程学报,2021,37(1):279-289. DOI:10.11975/j. issn.1002-6819.2021.01.033

Luo Hengguang, Li Changyou, Zhang Yongbo. Design and experimental study of 5HP-25 type grain dryer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(1):279-289. DOI:10.11975/j. issn.1002-6819.2021.01.033

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-20
  • 最后修改日期:2020-12-22
  • 录用日期:
  • 在线发布日期: 2021-01-20
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司