Abstract:Deterioration of soil structure has posed a great threat to the farmland and vegetation in ecological and environmental development in large subsided lands, due mainly to excessive coal mining for rapid economic growth in China in recent years. This study aims to accurately and comprehensively evaluate the effects of microorganisms-plants-soil interactions on the soil restoration of damaged ecology caused by coal mining in arid and semi-arid areas. In-situ monitoring was performed on an Amorpha fruticosa L. inoculated by different microorganisms in the coal-mining subsidence area of Daliuta in Shandong Province of eastern China. A systematic evaluation was made on the dynamic ecological effects of inoculated microorganisms (such as mycorrhizal fungi, phosphate solubilizing bacteria or simultaneous inoculation of microorganisms) treatments on the plant growth (plant height and crown width), mycorrhizal effect (mycorrhizal infection rate and hypha density), soil nutrients and properties, the leaf nutrients, and plant resistance under different growth seasons after four years of reclamation in the mining area. A dynamic ecological mechanism of microorganisms was also elucidated in the process of vegetation reclamation in arid and semi-arid coal mine areas. Compared with no inoculation, the inoculation of Funneliformis mosseae, Rhizophagus intraradices, and Bacillus megaterium significantly increased the plant height and crown width of A. fruticosa, as well as the concentration of nitrogen, phosphorus and potassium of A. fruticosa leaves. The reabsorption of leaves and stress resistance of A. fruticosa were also improved remarkably, due possibly to the reduction of relative electrical conductivity and the increase in the accumulation of proline and soluble sugar in the leaves. The soil pH and electrical conductivity were significantly reduced, with an obvious increase in the content of easy-to-extract Glomus (EE-GRSP), total-extract Glomus (T-GRSP), organic carbon, alkali hydrolyzable nitrogen, available phosphorus and available potassium of the rhizosphere soil. There was a significant synergistic effect of inoculation treatments on the growth of A. fruticosa, mycorrhizal infection rate, soil nitrogen, phosphorus and potassium nutrients, EEG and TG content, with the extension of reclamation time. Furthermore, simultaneous inoculation of Funneliformis mosseae and phosphate-dissolving bacteria played a positive role in the plant growth and mycorrhizal effect of A. fruticosa, plant nutrients, and soil stress resistance in arid and semi-arid coal mining areas after 4 years of ecological reclamation. Mycorrhizal fungi were inoculated in the subsided land to maintain sustainable ecological effects. Nevertheless, there was a significant increase in the plant survival/growth rate with a sharp decrease in the nutrient of plant rhizosphere after reclamation about two years. Until four years reclamation, the mycorrhizal fungi with informed hyphal nets contributed to increasing population diversity and absorbing more nutrition from far away space. In natural or managed soil ecosystems, the shifts in the diversity and community structure of arbuscular mycorrhizal fungal (AMF) assemblages over space and time were associated with the plant community succession, anthropogenic activities, and changes in environmental conditions. Such interactions included the mutualistic associations between most vascular plants and their below-ground mycorrhizal symbionts. In any way, the interaction between plant, soil, and mycorrhizal fungi can provide a potential theoretical and practical reference to the restoration of ecological functions and processes in disturbed soil ecosystems, such as post-mining subsided areas.