Abstract:Solar greenhouse has commonly been used for crop production in China. Correspondingly, much more attention has been drawn to the heat storage and release ability of the rear wall in a solar greenhouse. A phase change material (PCM) can be widely expected to effectively improve the performance of heat storage and release in solar greenhouse walls. In this study, three types of PCM walls were investigated to determine the heat performance in a sunlight greenhouse. A single block cement module was selected to test the ability of heat accumulation in laboratory. The measuring data was achieved as follows. The results show that the temperature of a F1, F2, and F3 phase change material cement module increases from 8.3 to 32 ℃ to absorb 2 575.2, 3 041.5, and 3 286.8 kJ heat, and the heat storage per unit volume is 74.5, 88.0, 95.1 MJ/m3; The temperature of the F3 phase change material cement module dropped from 32 to 7.8 ℃ and released heat of 2 067.0, 2 344.6, and 2 910.2 kJ, respectively, and the heat output per unit volume was 59.8, 67.8, and 84.2 mJ/m3. Under sunny winter conditions, the heat storage per unit volume of F1, F2 and F3 walls are 55 862.5, 57 137.5, 60 383.75 kJ/m3, and the heat release per unit volume is 29 290, 40 182.5, 49 511.25 kJ/m3. When the wall thickness is only about 14% of that of the soil wall, the heat storage and release performance of F1, F2 and F3 are better than that of 0.6m soil wall. The heat storage per unit volume of F1, F2, F3 phase change material cement module is soil respectively. 10.2 times, 10.4 times and 11 times of the wall, the heat output per unit volume is respectively 15.6 times, 21.5 times and 26.4 times of the earth wall. Therefore, we applied the phase change material cement module to the solar greenhouse on a large scale. The total area accounts for about half of the wall area. The results show that the phase change material wall absorbs a large amount of excess heat inside the greenhouse during the day on a sunny day in summer. F1 The wall absorbs a total of 35 614.8 kJ of heat, the F2 wall absorbs a total of 72 788.4 kJ, and the F3 wall absorbs a total of 57 153.6 kJ; the three absorb a total of 165 556.8 kJ and 30 brides emit 20 292.0 kJ at night; In sunny weather in winter, PCM wall absorbs heat in the daytime, and the three absorb a total of 203 158.2 kJ, and release a large amount of heat at night. F1 wall releases a total of 36 442.8kJ, F2 wall 49 993.2kJ, and F3 wall 51 333 kJ. The three emit a total of 137 769kJ of heat at night. The application of PCMs to sunlight greenhouses, with the aid of natural ventilation measures in summer, can efficiently absorb a lot of heat to avoid the temperature peak and release a lot of heat in winter for high night temperature. This finding can provide new ideas and solutions to improve the environment and temperature in a greenhouse.