基于FCN的无人机玉米遥感图像垄中心线提取
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省农业重大应用技术创新项目(SD2019ZZ019);山东省引进顶尖人才"一事一议"专项经费资助项目(鲁政办字[2018]27号)


Extraction of maize field ridge centerline based on FCN with UAV remote sensing images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决农业机器人在玉米田行间行走的全局路径规划问题,该研究提出一种基于全卷积神经网络(Fully Convolutional Networks,FCN)的无人机玉米遥感图像垄中心线提取方法。基于无人机获取的高精度可见光遥感图像,设计了针对农田垄中心线提取的数据集标注方法,采用滑动窗口法进行图像分块,利用深度学习语义分割网络FCN对垄中心线附近7~17像素宽度范围的垄线区域进行提取,模型在测试田块上精确率达66.1%~83.4%,召回率达51.1%~73.9%,调和平均值为57.6%~78.4%;对拼接后的图像使用影像分割投影法提取中心线,探究了垄线区域宽度对垄中心线提取精度的影响,训练采用9像素的垄区域宽度,可得到垄中心线在77 mm左右偏差范围准确率为91.2%,在31.5 mm左右偏差范围内为61.5%。结果表明,基于FCN对无人机玉米遥感图像进行处理,可得到整片田地的垄中心线栅格地图,方便农业机器人进行全局路径规划。

    Abstract:

    A Fully Convolutional Network (FCN) was herein proposed to extract ridge centerlines of a maize field from Unmanned Aerial Vehicles (UAVs) remote sensing images. A global path planning was selected for agricultural robots walking between rows of cornfields. The concept of ridge area (R-area) was constructed to offer further solutions, where an area was obtained by sweeping a straight line with a fixed width vertically on the centerline of the ridge. The R-area was semantically segmented to form a defined semantic range without clear boundaries. A dataset was designed to extract the centerline of farmland ridge, while the FCN was used to extract the R-area. The centerline of maize was manually annotated and rasterized in remote sensing images. As such, a threshold extraction was implemented to obtain the annotated image after Gaussian blur. The annotated and original images were divided into blocks using the sliding window. At the same time, these divided images were also trained. It was found that the accuracy rate (each model under the training of each width for the stitching test set image), recall rate, and the harmonic mean were 66.1%-83.4%, 51.1%-73.9%, and 57.6%-78.4%, respectively. The FNC model was then utilized to predict the image of the verification field after training. The model presented excellent robustness to predict complex situations, such as weeds between rows, uneven growth, and sprinklers above the crops. The image was then replaced according to the original position. Afterwards, the R-area distribution map was obtained. The projection division was performed on the R-area distribution map to acquire the centerline of the ridge. 19 339 slices were obtained using the segmented projection, where the number of slices was the same as the pixel height of the original maize remote sensing orthophoto. The center point of each ridge was obtained after projecting each slice. The center points were closely connected to collect a centerline distribution map, which was directly applied for agricultural robot navigation. An experiment was designed to explore the effects of line width for the R-area on the model training and centerline. The experiment also compared the image of the confusion matrix after model training with different line widths of different ridges. The accuracy of the model was trained with different line widths of ridges within different error ranges. At last, the final results demonstrated that the best performance of the model was obtained, when the line width was 9 pixels. Fluctuations of line thickness made the data lower. The optimal accuracy of the ridge centerline was 91.2% within the deviation range of about 77 mm, and 61.5% within the deviation range of about 31.5 mm. Extracting the centerline of the ridge was transformed into the semantic segmentation of R-area of UAV remote sensing images. The FCN network can be expected to segment the ridge and semantic region without obvious boundaries. This finding can offer semantic segmentation networks in deep learning to perform global path plans for agricultural robots in intelligent farming.

    参考文献
    相似文献
    引证文献
引用本文

赵静,曹佃龙,兰玉彬,潘方江,温昱婷,杨东建,鲁力群.基于FCN的无人机玉米遥感图像垄中心线提取[J].农业工程学报,2021,37(9):72-80. DOI:10.11975/j. issn.1002-6819.2021.09.009

Zhao Jing, Cao Dianlong, Lan Yubin, Pan Fangjiang, Wen Yuting, Yang Dongjian, Lu Liqun. Extraction of maize field ridge centerline based on FCN with UAV remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(9):72-80. DOI:10.11975/j. issn.1002-6819.2021.09.009

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-14
  • 最后修改日期:2021-04-18
  • 录用日期:
  • 在线发布日期: 2021-05-28
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司