基于改进FCOS网络的自然环境下苹果检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省重点研发计划一般项目-农业领域(2020NY-144)


Apple fruit detection under natural condition using improved FCOS network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了快速识别和准确定位自然环境下苹果果实目标,提出了一种改进全卷积单阶段无锚框(Fully Convolutional One-Stage object detection,FCOS)网络的苹果目标检测方法。该网络在传统FCOS网络基础上,使用模型体积较小的darknet19作为骨干网络,将center-ness分支引入到回归分支上。同时提出了一种融合联合交并比(GIoU)和焦点损失(Focal loss)的损失函数,在提高检测性能的同时降低正负样本比例失衡带来的误差。首先,对田间采集的自然环境下的苹果图像进行数据增强和标注,使用darknet骨干网络提取图像特征,然后将不同尺度待检测目标分配到不同的网络层中进行预测,最后进行分类和回归,实现苹果目标的检测。该研究在计算机工作站上对不同光照条件、不同密集程度和不同遮挡程度的苹果果实进行检测试验,并与传统FCOS网络的检测结果进行对比分析。基于改进FCOS网络的检测准确率为96.0%,检测精度均值(mean Average Precision,mAP)为96.3%。试验结果表明,改进FCOS网络比传统FCOS网络的苹果检测方法在检测准确度上有提高,具有较强的鲁棒性。

    Abstract:

    Abstract: Apple industry in China is leading the modern agriculture production around the world in recent years. In mechanized harvesting, a visual system is one of the most important components for an apple-picking robot, whose primary task is to quickly recognize the fruit. However, some factors can inevitably make the fruit target recognition difficult, such as complex backgrounds, variable illumination, shadows of branches and leaves, as well as the severe overlap in natural scenes. In this study, an improved target detection of apples was proposed using an improved Fully Convolutional One-Stage Object Detection (FCOS) network, in order to rapidly identify and accurately locate the fruits under complex natural conditions. A darknet19 with a smaller model volume was applied for the network as the backbone network, and then the center-ness branch was introduced to the regression branch. At the same time, a loss function combining Generalized Intersection over Union (GIoU) and Focus loss was presented to enhance the detection performance, while reducing the error caused by the imbalance of positive and negative sample ratios. In the beginning, the dataset of apple images was collected to enhance and label in the field under natural growth conditions, and then the features of images were extracted through the Darknet backbone network. After that, the objects to be detected at different scales were assigned to different network layers for subsequent prediction. Finally, classification and regression were carried out to realize the target detection of apples. The specific identification steps were as follows. Firstly, some parameters were needed to be modulated, including the brightness, contrast, hue, and saturation of the original image. Different operations were then utilized to accelerate the data enhancement, such as the horizontal mirror image, color disturbance, and noise adding. After that, a field experiment was conducted on the FCOS networks with varying degrees of improvement, where only multi-scale training was used as FCOS-A, the loss function applying only Focal loss was recorded as FCOS-B, the loss function using only GIoU loss as the bounding box loss was marked as FCOS-C, and all the above improvements at the same time were recorded as modified FCOS. The detection performances of improved FCOS-A, FCOS-B, FCOS-C, and modified FCOS were improved significantly, compared with the traditional FCOS network. It infers that the multi-scale training, together with the application of GIoU and Focal loss greatly contributed to a better performance of the network. Both networks of FCOS and improved FCOS accurately identified the apple targets in the case of double fruits. Similarly, the improved FCOS network also achieved a better detection performance in the case of multi-fruit and dense fruits, compared with the traditional FCOS network. Since the fruits in the natural growth environment were often shaded with each other or by branches or leaves, some contour information of fruits was lost in the fruit detection, leading to a detecting difficulty in these losing parts. In addition, the size of the target frame in the modified FCOS network was closer to the size of the true outline of fruits, when the fruit was severely obscured by branches and leaves. In any way, the modified FCOS network achieved better detection and higher robustness under the conditions of forward light and backlight, compared with the traditional network. A detection test of apple fruits was also carried out with different lighting conditions, density, and shading degrees on the computer workstation. The precision of detection was 96.0%, and the mean Average Precision (mAP) was 96.3%, indicating a higher detection accuracy and stronger robustness than before in the apple detection using the improved FCOS network.

    参考文献
    相似文献
    引证文献
引用本文

龙燕,李南南,高研,何梦菲,宋怀波.基于改进FCOS网络的自然环境下苹果检测[J].农业工程学报,2021,37(12):307-313. DOI:10.11975/j. issn.1002-6819.2021.12.035

Long Yan, Li Nannan, Gao Yan, He Mengfei, Song Huaibo. Apple fruit detection under natural condition using improved FCOS network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(12):307-313. DOI:10.11975/j. issn.1002-6819.2021.12.035

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-01
  • 最后修改日期:2021-04-19
  • 录用日期:
  • 在线发布日期: 2021-07-28
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司