Abstract:The fuel efficiency of the engine is only 15%-35% while the tractor is working in the field, and the exhaust energy accounts for 38%-45% of the energy released by the fuel. The recovery and reuse of exhaust heat energy could help improve fuel efficiency and reduce emissions. Studies have shown that the exhaust waste heat energy based on the Organic Rankine Cycle (ORC) is the highest. The evaporator is a key component of the ORC system, analyzing its thermal performance under limited space conditions of the tractor could provide a theoretical basis for the optimal design of evaporator parameters, thereby effectively improving the utilization of exhaust heat. This study according to the actual size of the tractor, a plate-fin evaporator was trial-produced to recover diesel exhaust waste heat. A numerical model of convective heat transfer between evaporator exhaust and working fluid based on moving boundary method was established and was verified the validity by combining with bench test data, the thermal performance of the evaporator under full operating conditions of the diesel engine was quantitatively analyzed; meanwhile in order to improve the heat transfer and scope of application of the evaporator, CFD simulation and BP neural network methods were used to further analyze the heat transfer characteristics of the evaporator under off-design conditions, the structure and working fluid parameters were optimized. The results showed that: 1) the evaporator had better thermal performance under medium and high speed load conditions, and the heat transfer reached a maximum of 69.89 kW under 4 000 r/min full load conditions, and the heat transfer of the evaporator would be unstable under medium and low speed load conditions due to the lower exhaust heat capacity flow rate, heat transfer coefficient, and a larger working fluid mass flow rate, resulting in the flow was difficult to ensure that the working fluid was transformed into superheated steam, so that the heat transfer in the two-phase zone and the superheat zone was zero within the evaporator. 2) in order to improve the distribution and turbulence of the fluid in the flow channel, increasing the pipe chamfer and adopting the corrugated fin shape to promote forced heat exchange, the CFD simulation showed the entire high-temperature area moved forward to the inlet of the nozzle to make the flow channel utilization rate higher and heat transfer more. With the optimized structure of the evaporator, the working fluid had a higher degree of overheating under the condition of the same overall size, the maximum heat transfer increased by 5.2%, the heat transfer area increased by 0.19 m2, and the volume only increased by 0.002 m3. 3) combined with the BP neural network algorithm, the evaporator flow channel length, working fluid flow and inlet temperature were optimized parameters, and the thermal performance of the evaporator under off-design working conditions was further analyzed, and the parameter range under the medium and low speed load conditions is determined. Thus, the selection range of the working fluid flow rate at different speeds was proposed, which effectively improving the thermal performance of the evaporator under low-to-medium speed load conditions, and providing a reference for the selection of the transmission ratio of the booster pump and the output speed of the diesel engine and the selection of the transmission device. For example, when 1 500 r/min was under a medium and high load, the flow rate could be changed from 0.03 kg/s to 0.08 kg/s and the maximum heat transfer up to 19.46 kW; at the same time, the transmission ratio could be set to 0.78-1.88 at 1 500 r/min. The results of the study are of great significance and present the fluid flow and heat transfer characteristics of the evaporator, which provide a reference for the actual use of the evaporator in tractors and matching with diesel engine operating conditions.