Abstract:Monitoring the crop growth by using Unmanned Aerial Vehicle (UAV) based remote sensing technique is one of important directions for the development of precision and smart agriculture in China. In recent years, the development of UAV technology has greatly promoted the timely and rapid acquisition and long-term dynamic monitoring of agricultural and forestry ecological environment elements such as crop vegetation, water and soil. Compared with the data acquisition methods of satellite remote sensing and aerial remote sensing, UAV has the advantages of flexibility, convenience, low data acquisition cost and high image resolution. UAV remote sensing image is gradually becoming the main data source for the development of intelligent agriculture and forestry. In order to explore the inversion potential of Leaf Area Index (LAI) and chlorophyll content (SPAD) of wheat from UAV multi-spectral images, the multispectral images at three levels of flight altitudes (30, 60 and 120 m) by using the DJI Phantom4-M UAV platform which integrated five multispectral sensors (blue, green, red, red edge and near infrared) and TimeSync time synchronization system were collected to achieve centimeter-level positioning accuracy with more than 2 million pixel resolution, in Yuanyang wheat breading based, Xinxiang City, Henan Province. Based on the collected multispectral images, four different kinds of spectral indexes including: DSI (Difference Spectral Index), Ratio Spectral Index (Ratio Spectral Index), Normalized Spectral Index (NDSI) and Empirical Vegetation Index (EDVI) were used to compute the wheat canopy LAI and chlorophyll content (SPAD). The correlation analysis between different spectral index from different height UAV images and in-situ measured LAI and SPAD data were applied to select the optimal spectral index at different height. The Multiple Linear Stepwise Regression (MLSR), Partial Least Squares Regression (PLSR) and Back Propagation (BP) neural network model were constructed respectively for estimation of LAI and SPAD values. The experimental result showed that: 1) At 30 m height, the correlation coefficient between the green-red ratio spectral index and wheat LAI was the highest, with the value of 0.84. At the height of 60 m, the correlation coefficient between red-blue ratio spectral index and wheat chlorophyll content was the highest, with the value of 0.68. 2) At the height of 60 m, the correlation between EDVI and LAI and chlorophyll content of wheat were both good, and the maximum correlation coefficients were 0.77 and 0.50, respectively. 3) The accuracy of wheat LAI inversion using partial least squares regression was the highest, with a determination coefficient of 0.732 and a root mean square error of 0.055. The accuracy of chlorophyll content inversion using artificial neural network model is the highest, the determination coefficient is 0.804, and the root mean square error is 0.135. This study provides a theoretical basis for high-throughput crop monitoring based on UAV platform, and provides an application reference for selecting UAV multi-spectral bands to achieve rapid estimation of crop growth parameters.