基于目标像素变化的柚果单目测距算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFD0701105-2);中央高校基本科研业务费专项基金资助(2662020GXPY011)


Monocular distance measurement algorithm for pomelo fruit based on target pixels change
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对山地果园光线变化和枝叶遮挡干扰果实距离检测的问题,该研究提出一种利用目标区域像素数量变化预测成像距离的算法。根据单目测距原理和柚果成像特性,以具备尺寸和形状代表性的离树柚果样本为研究对象,在采摘作业距离范围内利用单一相机以固定间隔步距对果实某一侧面连续获取图像数据,用以建立并验证目标区域像素数量变化与成像距离变化之间的多元回归关系。随后将该算法应用于果园中树上柚果样本以检验其适用性,并讨论初始成像距离和步距取值对测距精度的影响。研究结果表明,在125 cm以内,6个树上柚果样本的测距相对误差均低于5%,满足采摘机械手目标定位的精度要求;初始成像距离对该算法测距精度具有显著影响。该研究单目测距算法满足果园环境中柚果目标与相机间距离检测需求,为相关采摘机械手的柚果目标识别提供了一种可行方案。

    Abstract:

    Accurate identification of target depth is the critical premise for the manipulator of fruit and vegetable picking in intelligent agriculture. However, the general ranging of fruit has posed a great challenge on that the orchard in the mountain areas, due mainly to the light change, as well as the branch and leaf occlusion. In this study, a novel imaging algorithm was proposed to detect the monocular distance between the pomelo fruits and camera using target pixels change. The pomelo fruit off the tree in the orchard was chosen as the samples for data collection. Multiple regression was also established to verify the number change of pixels in the target areas and imaging distance. Furthermore, the pomelo fruit on the tree was involved to test the applicability in the samples. Additionally, a systematic investigation was made to explore the influences of initial imaging distance and step interval on prediction accuracy. The specific procedure was as follows. A single camera was utilized to capture the imaging data of the sample fruit side within the imaging distance ranging from 25 to 150 cm, where the common range of picking operation was set at the step interval of 2.5 cm. Therefore, there were 51 images side for each fruit for one group of data. 20 pomelo fruits with the representative shape and size were selected for the imaging data collection, including 14 off-tree and 6 on-tree. In the pomelo fruits off the tree, the surface was equally divided into four sides, where one group of data was acquired from each side. As such, a total of 56 data groups were collected from the samples of the tree. Subsequently, the 40 data groups were randomly selected to establish the multiple regressions between the imaging distance and the number of pixels change in the target area on the image, while the rest 16 data groups were used to optimize the algorithm. In the pomelos fruits on the tree, only the side towards the outside of the canopy was shot as one sample side, where 6 data groups were collected for testing. The numbers of pixels were then measured for the target areas in the image using Photoshop software. MATLAB 2018 platform was finally utilized to calculate the regression and curve fitting. The results showed that the error of predicted distance decreased gradually, as the camera approached the fruit target from 150 to 120 cm. In the fruit samples off the tree, the accuracy of distance prediction was at the medium level closer than 130 cm at the high level of about 120 cm. The relative ranging errors of 16 samples off-tree were less than 5% within the imaging distance of 120 cm, when 150 cm was as the initial distance, indicating that an excellent detection performance of imaging distance between the target and camera. In the fruit samples on the tree, the ranging accuracies were set as 125-137.5 cm and 25.0-125.0 cm for the medium and high levels, respectively. Correspondingly, the relative ranging errors of 6 samples on the tree were less than 5% within 125 cm imaging distance, fully meeting the accuracy requirements of target positioning for the picking manipulator. In addition, there was a significant effect of initial imaging distance on the measurement accuracy. Consequently, the measurement method of monocular distance can widely be expected to realize the rapid prediction of the distance between the fruit target and camera in the complex orchard environment, especially in the hilly mountain areas. Meanwhile, the finding can also provide a feasible scheme for the accurate recognition of fruit targets for picking manipulators in modern orchards.

    参考文献
    相似文献
    引证文献
引用本文

刘洁,周典卓,李燕,李定科,李英琪,Rubel Rana.基于目标像素变化的柚果单目测距算法[J].农业工程学报,2021,37(19):183-191. DOI:10.11975/j. issn.1002-6819.2021.19.021

Liu Jie, Zhou Dianzhuo, Li Yan, Li Dingke, Li Yingqi, Rubel Rana. Monocular distance measurement algorithm for pomelo fruit based on target pixels change[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(19):183-191. DOI:10.11975/j. issn.1002-6819.2021.19.021

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-29
  • 最后修改日期:2021-08-26
  • 录用日期:
  • 在线发布日期: 2021-11-16
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司