基于高光谱技术的退耕还林地年限判别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2021YFD1600301)


Identification of the years of returning farmland to forest land using hyperspectral technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自2000年以来,黄河中游坡度较大的不同区域、同一区域的不同部位在不同年度实施了退耕还林工程,促进了黄河中游土壤质量及生态环境的改善。为了研究退耕工程对土壤及环境的影响机制,需要快速获取退耕年限及土壤特征。该研究以黄河中游大宁县不同年限退耕还林土壤为研究对象,获取不同年限退耕还林土壤理化性质,同时测定不同退耕年限土壤光谱特征曲线,以表征不同退耕年限的土壤属性及光谱特征;以土壤原始光谱反射率数据(Reflectance,R)为基础,采用Savitzky-Golay平滑(Savitzky-Golay smooth,SG)、倒数的对数(Reciprocal of Logarithm,RL)、一阶微分(First Order Differential,FD)、去包络线(Continuum Removal,CR)、主成分分析(Principal Component Analysis,PCA)以及光谱特征参数(Spectral Characteristic Parameter,SCP)等光谱预处理,以原始反射率主成分(R-PCA)、倒数的对数主成分(RL-PCA)、一阶微分主成分(FD-PCA)、去包络线主成分(CR-PCA)、SCP为输入因子,采用K均值聚类(K-means Clustering Algorithm,K-means)、支持向量机(Support Vector Machine,SVM)和线性判别分析(Liner Discriminant Analysis,LDA)构建退耕年限的分类模型并选取最优模型。结果表明:1)退耕年限的增加会导致土壤理化性质的显著变化,土壤有机碳(Soil Organic Carbon,SOC)含量、土壤含水率逐渐增加,土壤黏粒含量逐渐减少,土壤粉粒、砂粒及饱和导水率呈现先增加后减少的趋势;2)不同退耕年限土壤光谱曲线差异细微,预处理CR可显著提升光谱曲线的吸收特征,在480、900、1 100、1 400、1 900、2 200和2 350 nm处出现明显的吸收特征;3)3种分类模型取得了较为理想的分类精度,其中LDA模型最优,Kappa系数最大为0.83;5种输入因子分类效果差异显著,其中CR-PCA分类效果最好,不同模型分类精度均达到75%以上。该研究通过土壤光谱曲线探索不同年限退耕还林土壤的光谱特征及分类方法,可实现退耕年限的快速区分,为退耕还林工程对土壤属性及环境影响的进一步研究提供参考。

    Abstract:

    Soil quality and ecological environment have been improved in the middle reaches of the Yellow River in China. This improvement can attribute to the national project of returning farmland to forest in different years since 2000, particularly on the great slopes. Therefore, it is necessary to rapidly acquire the years of returning farmland and soil characteristics, in order to evaluate the ecological benefits of the project. Taking the middle reaches of the Yellow River as the study area, this study aims to obtain the soil's physical and chemical properties, as well as the soil's spectral curves for the returning cropland to forest in different years using hyperspectral imaging technology. Some spectral preprocessing were utilized, including the Savitzky-Golay Smoothing (SG), Reciprocal Logarithm (RL), the First-Order Differential (FD), Continuum Removal (CR), Principal Component Analysis (PCA), and Spectral Characteristic Parameters (SCP). The classification models were constructed for the years of returning cropland to forest using the K-means clustering (K-means), support vector machine (SVM), and Linear Discriminant Analysis (LDA). Among them, the input factors were set as The Principal Component Of Original Reflectance (R-PCA), Principal Component Of Logarithm Of The Reciprocal (RL-PCA), Principal Component Of First-Order Differential (FD-PCA), Principal Component Of Continuum Removal (CR-PCA), and SCP. The results showed that: 1) The content of Soil Organic Carbon (SOC) increased gradually, and the content of sand particles increased first and then decreased, with the increase of the years of returning cropland. The content of SOC was negatively correlated with the soil original reflectance. 2) There was a similar shape of soil original spectral curve in the different years of returning farmland, indicating the overall increasing trend. The CR preprocessing was significantly improved the absorption of the spectral curve, with the outstanding absorption characteristics at 480, 900, 1100, 1400, 1900, 2200, and 2350 nm. 3) The highest accuracy (87.50%) was achieved in the classification model of LDA with the CR-PCA as input factor, which was the optimal classification model. The second highest accuracy (84.38%) was found in the classification model of SVM with the FD-PCA as the input factor. All the classification models with the CR-PCA as input factor shared the highest accuracy of more than 75%, with the maximum of 87.50 %, indicating that the CR-PCA was the optimal input factor to distinguish the different years of returning farmland in this case, followed by the FD-PCA. As such, the rapid distinction of the years was fully realized for the returning farmland to forest, according to the spectral characteristics and classification through the soil spectral curves. The finding can provide a strong reference for the soil properties and environmental impacts of the returning farmland to forest.

    参考文献
    相似文献
    引证文献
引用本文

邓永鹏,朱洪芬,丁皓希,孙瑞鹏,毕如田.基于高光谱技术的退耕还林地年限判别[J].农业工程学报,2022,38(3):66-74. DOI:10.11975/j. issn.1002-6819.2022.03.008

Deng Yongpeng, Zhu Hongfen, Ding Haoxi, Sun Ruipeng, Bi Rutian. Identification of the years of returning farmland to forest land using hyperspectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022,38(3):66-74. DOI:10.11975/j. issn.1002-6819.2022.03.008

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-28
  • 最后修改日期:2021-12-10
  • 录用日期:
  • 在线发布日期: 2022-03-11
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司