基于无人机图像分割的冬小麦叶绿素与叶面积指数反演
作者:
基金项目:

国家重点研发计划(2019YFE0125300);现代农业产业技术体系建设专项资金(CARS-03);河南省高等学校重点科研项目计划(20A420004);河南省重点研发与推广专项项目(202102110270)


Inversion of chlorophyll and leaf area index for winter wheat based on UAV image segmentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    叶绿素含量与叶面积指数是反映作物长势的重要理化参数,准确、高效定量估计小麦叶绿素含量与叶面积指数对于产量预测和田间管理决策具有重要意义,无人机(Unmanned Aerial Vehicle,UAV)遥感影像具有高空间分辨率的优势,被广泛应用于作物理化参数反演,但现有叶绿素含量与叶面积指数反演模型受土壤、阴影等背景噪声的影响较大,该研究旨在探索去除无人机多光谱影像中的背景像元能否提高作物叶绿素含量和叶面积指数反演精度。首先通过过绿-过红植被指数对多光谱图像阈值分割,提取试验小区所有小麦像元平均反射率。然后选择与冬小麦叶绿素相对含量值(Soil and Plant Analysis Development,SPAD)、叶面积指数(Leaf Area Index,LAI)和冠层叶绿素相对含量(Canopy Chlorophyll Content,CCC)相关性最高的5个敏感植被指数,最后利用偏最小二乘回归(Partial Least Squares Regression,PLSR)建立冬小麦拔节期、挑旗期和开花期3个关键生育期的SPAD、LAI和CCC反演模型。结果表明:1)利用冬小麦像元光谱建立的SPAD、LAI和CCC反演模型(VI_GreenPix)比所有像元构建的反演模型(VI_AllPix)精度更高,基于VI_GreenPix的SPAD建模集与验证集决定系数分别为0.85和0.93,均方根误差分别为3.51和2.67;LAI建模集与验证集决定系数分别为0.70和0.80,均方根误差分别为0.42和0.38 m2/m2;CCC建模集与验证集决定系数分别为0.79和0.69,均方根误差分别为21.14和23.50。2)不同覆盖度下,VI_GreenPix对SPAD、LAI和CCC的精度提升效果不同。在所有覆盖度下VI_GreenPix都能提高SPAD的反演精度,覆盖度低于40%时提升效果最好;覆盖度低于80%时能提升LAI的反演精度,覆盖度低于40%时提升效果最好;所有覆盖度下都能提高CCC的反演精度,覆盖度低于70%时提升效果更好。VI_GreenPix能有效提升冬小麦SPAD、LAI和CCC的估测精度,研究结果可为冬小麦长势监测和生产管理提供技术支持。

    Abstract:

    Unmanned Aerial Vehicle (UAV) remote sensing images with a high spatial resolution have been widely used to estimate crop physical and chemical parameters in recent years. Since the planting area of wheat has accounted for about 1/5 of the total grain one in China, an accurate and efficient estimation of wheat phenotypic parameters is of great significance for yield prediction and field management. Leaf Area Index (LAI) and chlorophyll relative content are closely related to the ability of crops to intercept and absorb the incident Photosynthetically Active Radiation (PAR). These key variables have been excellent indicators for various abiotic and biological stresses in the photosynthesis, respiration, and transpiration during crops growth. However, the existing estimation models are greatly affected by some background noises in the remote sensing images, such as soil and shadow. The objective of this study was to explore whether the removal of background pixels was utilized to improve the inversion accuracy of chlorophyll content and LAI of crops. The Excess Green minus Excess Red vegetation index (ExG-ExR) was first selected to segment the UAV multi-spectral images of winter wheat in the key growth periods (jointing, flagging, and flowering). Then, the average reflectance of wheat pixels (GreenPix) was extracted in the test plot. Five multispectral bands and 20 vegetation indices were selected to analyze the correlation with three phenotypic parameters, including the Soil and Plant Analysis Development (SPAD), LAI, and Canopy Chlorophyll Content (CCC). The first five sensitive vegetation indices with the high correlation were screened to establish the inversion models of physical and chemical parameters in winter wheat using Partial Least Squares Regression (PLSR). The results showed that the model of wheat pixel spectrum (VI_GreenPix) was significantly improved the estimation accuracy of winter wheat SPAD (Calibration dataset: R2 = 0.85, RMSE = 3.51; Verification dataset: R2=0.93, RMSE=2.67), indicating a higher estimation accuracy of SPAD, compared with all pixel spectrum (VI_AllPix) (Calibration dataset: R2=0.79, RMSE=4.12; Verification dataset: R2 = 0.78, RMSE = 4.19) under the whole coverage, especially the coverage below 40%. The accuracy of LAI inversion by VI_GreenPix was consistent with the constructed model by VI_AllPix (R2=0.70, RMSE = 0.42), but the verification accuracy was much higher (R2=0.80, RMSE=0.38) than that by VI_AllPix (R2=0.75, RMSE=0.42). The VI_GreenPix was greatly contributed to the LAI estimation accuracy, when the coverage was less than 80%. The VI_GreenPix also improved the inversion accuracy of CCC under the whole coverage (Calibration dataset: R2 =0.79, RMSE=21.14; Verification dataset: R2= 0.69, RMSE=23.50), with the best effect at the coverage less than 70%. Consequently, the spectral information of vegetation pixels was extracted to construct the physical and chemical parameters estimation model of winter wheat, further to improve the inversion accuracy of SPAD, LAI, and CCC via the vegetation index threshold segmentation using high-resolution UAV multispectral images. The findings can provide a technical support to the growth monitoring and yield prediction of winter wheat.

    参考文献
    [1]邵永同,谢伟,王常柏. 我国主产区小麦供给反应研究:兼析河南省小麦播种面积与收购价格关系[J]. 价格理论与实践,2019(5):55-58.Shao Yongtong, Xie Wei, Wang Changbo. Study on wheat supply response in main production areas of China: Analysis of wheat planting area and price in Henan Province[J]. Price: Theory & Practice, 2019(5): 55-58. (in Chinese with English abstract)
    [2]Li Z, Jin X, Wang J, et al. Estimating winter wheat (Triticum aestivum) LAI and leaf chlorophyll content from canopy reflectance data by integrating agronomic prior knowledge with the PROSAIL model[J]. International Journal of Remote Sensing, 2015, 36(10): 2634-2653.
    [3]束美艳,顾晓鹤,孙林,等. 基于新型植被指数的冬小麦LAI高光谱反演[J]. 中国农业科学,2018,51(18):3486-3496.Shu Meiyan, Gu Xiaohe, Sun Lin, et al. High spectral inversion of winter wheat LAI based con new vegetation index[J]. Scientia Agricultura Sinica, 2018, 51(18): 3486-3496. (in Chinese with English abstract)
    [4]Verger A, Vigneau N, Chéron C, et al. Green area index from an unmanned aerial system over wheat and rapeseed crops[J]. Remote Sensing of Environment, 2014, 152: 654-664.
    [5]Yang G J, Liu J G, Zhao C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspective[J]. Frontiers in Plant Science, 2017, 8: 26.
    [6]Darvishzadeh R, Skidmore A, Schlerf M, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland[J]. Remote Sensing of Environment, 2008, 112(5): 2592-2604.
    [7]Jay S, Gorretta N, Morel J, et al. Estimating leaf chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery[J]. Remote Sensing of Environment, 2017, 198: 173-186.
    [8]魏青,张宝忠,魏征,等. 基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究[J]. 麦类作物学报,2020,40(3):365-372.Wei Qing, Zhang Baozhong, Wei Zheng, et al. Estimation of canopy chorophyll content in winter wheat by UAV multispectral remote sensing[J]. Journal of Triticeae Crops, 2020, 40(3): 365-372. (in Chinese with English abstract)
    [9]苏伟,王伟,刘哲,等. 无人机影像反演玉米冠层LAI和叶绿素含量的参数确定[J]. 农业工程学报,2020,36(19):58-65.Su Wei, Wang Wei, Liu Zhe, et al. Determining the retrieving parameters of corn canopy LAI and chlorophyll content computed using UAV image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 58-65. (in Chinese with English abstract)
    [10]王玉娜,李粉玲,王伟东,等. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报,2020,36(22):31-39.Wang Yuna, Li Fenling, Wang Weidong, et al. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 31-39. (in Chinese with English abstract)
    [11]Zarco-Tejada P J, Guillén-Climent M L, Hernández-Clemente R, et al. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) [J]. Agricultural and Forest Meteorology, 2013, 171/172: 281-294.
    [12]Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25: 295-309.
    [13]Ren H, Zhou G, Zhang F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands[J]. Remote Sensing of Environment, 2018, 209: 439-445.
    [14]Daughtry C, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote Sensing of Environment, 2000, 74(2): 229-239.
    [15]Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107.
    [16]Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 416-426.
    [17]Jay S, Baret F, Dutartre D, et al. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops[J]. Remote Sensing of Environment, 2019, 231: 110898.
    [18]刘帅兵,杨贵军,景海涛,等. 基于无人机数码影像的冬小麦氮含量反演[J]. 农业工程学报,2019,35(11):75-85.Liu Shuaibing, Yang Guijun, Jing Haitao, et al. Retrieval of winter wheat nitrogen content based on UAV digital image[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2019, 35(11): 75-85. (in Chinese with English abstract)
    [19]Xu X, Fan L, Li Z, et al. Estimating leaf nitrogen content in corn based on information fusion of multiple-sensor imagery from UAV[J]. Remote Sensing, 2021, 13(3): 17.
    [20]Lou P, Fu B, He H, et al. An Effective method for canopy chlorophyll content estimation of marsh vegetation based on multiscale remote sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5311-5325.
    [21]Schell J A. Monitoring vegetation systems in the great plains with ERTS [J]. Nasa Special Publication, 1973, 351: 309.
    [22]Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87.
    [23]Gitelson A A, Keydan G P, Merzlyak M N. Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[J]. Geophysical Research Letters, 2006, 33(11): 431-433.
    [24]Dash J, Curran P J. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing, 2004, 25(23): 5403-5413.
    [25]Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
    [26]Wang F M, Huang J F, Tang Y L, et al. New vegetation index and its application in estimating leaf area index of rice[J]. Rice Science, 2007, 14(3): 195-203.
    [27]Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
    [28]Pearson R L, Miller L D. Remote mapping of standing crop biomass for estimation of productivity of the shortgrass prairie[J]. Remote Sensing of Environment, 1972, 8: 1355.
    [29]付元元. 基于遥感数据的作物长势参数反演及作物管理分区研究[D]. 杭州:浙江大学,2015.Fu Yuanyuan. Remote Sensing Data based Crop Growth Parameters Retrieval and Crop Management Zone Delineation Reasearch[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)
    [30]Gnyp M L, Li G B F, Lenz-Wiedemann V I S, et al. Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the north China plain[J]. International Journal of Applied Earth Observation & Geoinformation, 2014, 33: 232-242.
    [31]Verrelst J, Schaepman M E, Koetz B, et al. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data[J]. Remote Sensing of Environment, 2008, 112(5): 2341-2353.
    [32]Wu C, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8/9): 1230-1241.
    [33]Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172.
    [34]Fitzgerald G J, Rodriguez D, Christensen L K, et al. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments[J]. Precision Agriculture, 2006, 7(4): 233-248.
    [35]Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications [J]. Computers and Electronics in Agriculture, 2008, 63(2): 282-293.
    [36]马志勇,沈涛,张军海,等. 基于植被覆盖度的植被变化分析[J]. 测绘通报,2007(3):45-48.Ma Zhiyong, Shen Tao, Zhang Junhai, et al. Vegetation changes analysis based on vegetation coverage[J]. Bulletin of Surveying and Mapping, 2007(3): 45-48. (in Chinese with English abstract)
    [37]陆洪涛. 偏最小二乘回归数学模型及其算法研究[D]. 北京:华北电力大学,2014.Lu Hongtao. Partial Least Squares Regression Models and Algorithms Research[D]. Beijing: North China Electric Power University, 2014. (in Chinese with English abstract)
    [38]王军,姜芸. 基于无人机多光谱遥感的大豆叶面积指数反演[J]. 中国农学通报,2021,37(19):134-142.Wang Jun, Jiang Yun. Inversion of soybean leaf area index based on UAV multispectral remote sensing[J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 134-142. (in Chinese with English abstract)
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓尚奇,赵钰,白雪源,李旭,孙振东,梁健,李振海,成枢.基于无人机图像分割的冬小麦叶绿素与叶面积指数反演[J].农业工程学报,2022,38(3):136-145. DOI:10.11975/j. issn.1002-6819.2022.03.016

Deng Shangqi, Zhao Yu, Bai Xueyuan, Li Xu, Sun Zhendong, Liang Jian, Li Zhenhai, Cheng Shu. Inversion of chlorophyll and leaf area index for winter wheat based on UAV image segmentation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022,38(3):136-145. DOI:10.11975/j. issn.1002-6819.2022.03.016

复制
分享
文章指标
  • 点击次数:763
  • 下载次数: 1745
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-14
  • 最后修改日期:2021-12-14
  • 在线发布日期: 2022-03-11
文章二维码
您是第39814553位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!