改进YOLOv3算法检测三七叶片病害
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61876097)


Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决三七叶片密集病害和小区域病害检测不准确的问题,该研究提出了一种改进的YOLOv3(You Only Look Once v3)目标检测算法(AD-YOLOv3)对三七叶片各种病害进行检测。AD-YOLOv3使用注意力特征金字塔(Attention Feature Pyramid,AFP)替代YOLOv3中的原始特征金字塔,解决了特征融合过程中的干扰问题,提升了病害检测精度。使用双瓶颈层(Dual Bottleneck,DB)筛选注意力特征金字塔提取到的特征,增强特征的特异性,提升了算法的鲁棒性。AD-YOLOv3与YOLOv3相比在各项性能指标上均有提升,精确率提升2.83个百分点,F1精度提升1.68个百分点,平均精度均值(Mean Average Precision,mAP)提升1.47个百分点,针对小区域病害和密集病害的检测能力明显增强。此外,AD-YOLOv3在雾,雨,暗光等复杂环境下的抗干扰能力明显提升,该研究为三七叶片的病害检测提供了一种更优的智能检测方法。

    Abstract:

    Panax notoginseng is one kind of the most precious herbal medicine in China. A variety of leaf diseases easily occur and disperse widely during the planting process at present. However, there is no universal detection of leaf diseases so far, due to the diversity and complexity of the leaf diseases of Panax notoginseng. Alternatively, a target detection technology using deep learning has been applied for detection tasks in various fields. This technology can be widely expected to greatly improve the efficiency of detection tasks for smart agriculture. In this study, an improved YOLOv3 (You Only Look Once v3) object detection (AD-YOLOv3) was proposed to locate and identify the complex diseases of Panax notoginseng leaves in dense and small areas. The attention feature pyramid in the AD-YOLOv3 was selected to replace the original in YOLOv3. Specifically, the channel attention module was used to compress each channel of the original feature map into a single value, then input into the fully connected layer and activate with the activation function for the weight of each feature channel, and finally the weight to perform the feature channel on the original feature map reorganization. As such, the important features were focused in the channel attention, further to discard the irrelevant for the less redundant interference in the multi-scale feature map during feature fusion. A double bottleneck layer was designed with two stacked blocks, where the first bottleneck block was added with the residual connection, and the second bottleneck block was the traditional structure in the attention feature pyramid. The resulting dual bottleneck block presented a higher performance than the raw. The dual bottleneck layer was further used to filter the features from the attention feature pyramid, indicating the better specificity of features and the robustness of detection. The attention feature pyramid and the double bottleneck layer were integrated to significantly improve the four performance indicators of the detection. Specifically, the AD-YOLOv3 had improved the overall accuracy, F1 accuracy, and mean average precision by 2.83, 1.68, and 1.47 percentage points, respectively, compared with YOLOv3. At the same time, the AD-YOLOv3 had improved the detection capabilities for each type of disease. The average precision of plague, rust disease, anthrax disease, powdery mildew, round spot disease, virosis, and all kinds of diseases were 78.0%, 79.5%, 86.7%, 69.0%, 85.9%, 84.2%, and 80.6%, respectively. The detection ability was significantly enhanced in the small and dense areas, as well as the anti-interference ability under complicated environments, such as fog, rain, and dark light. Correspondingly, there was a tradeoff between detection speed and accuracy in the AD-YOLOv3 with a simple structure, compared with the second-order object detection of Mask-RCNN. The modified AD-YOLOv3 can also be deployed to the server or client in the cloud detection of diseases in real time. The finding can provide a better intelligent detection for the leaf disease of Panax notoginseng.

    参考文献
    相似文献
    引证文献
引用本文

文斌,曹仁轩,杨启良,张健,朱晗,李知聪.改进YOLOv3算法检测三七叶片病害[J].农业工程学报,2022,38(3):164-172. DOI:10.11975/j. issn.1002-6819.2022.03.019

Wen Bin, Cao Renxuan, Yang Qiliang, Zhang Jian, Zhu Han, Li Zhicong. Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022,38(3):164-172. DOI:10.11975/j. issn.1002-6819.2022.03.019

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-18
  • 最后修改日期:2021-11-27
  • 录用日期:
  • 在线发布日期: 2022-03-11
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司