特征优化与随机森林算法结合的干旱区植被高光谱遥感分类方法
DOI:
作者:
作者单位:

武汉轻工大学土木工程与建筑学院

作者简介:

通讯作者:

中图分类号:

基金项目:

青海省青藏高原北部地质过程与矿产资源重点实验室专项基金 (2019-kz-01)


Hyperspectral image classification method for dryland vegetation by combining feature optimization algorithms and random forest algorithm
Author:
Affiliation:

School of Civil Engineering and Architecture, Wuhan Polytechnic University

Fund Project:

Key Laboratory of theNorthern Qinghai-Tibet Plateau Geological Processes and MineralResources (2019-kz-01)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱遥感技术已广泛应用于植被类型制图,综合利用遥感数据光谱和纹理特征已成为提升分类精度有效途径,但多尺度纹理特征与高光谱数据组成的高维特征空间产生的休斯效应会影响图像分类精度,遗传算法(Genetic Algorithm,GA)等特征优化算法结果的随机性也会造成图像分类精度的不确定性。针对高维光谱纹理特征空间的降维和特征优化算法结果的不确定性等问题,在提取多尺度纹理图像构建高维光谱纹理特征空间的基础上,将GA算法、粒子群优化算法(Particle Swarm Optimization,PSO)等传统特征优化算法和广义正态分布优化算法(Generalized Normal Distribution Optimization,GNDO)、原子搜索算法(Atom Search Algorithm,ASO)、海洋捕食者算法(Marine Predators Algorithm,MPA)等新型特征优化算法与随机森林(Random Forest,RF)图像分类算法相结合,提出了GA-RF、PSO-RF、GNDO-RF、ASO-RF和MPA-RF高光谱图像分类算法,并应用于青海省海西蒙古族藏族自治州都兰县宗加镇附近区域资源一号02D(ZY1-02D)高光谱数据的植被类型分类。结果显示,从不同窗口大小、窗口移动方向提取的纹理图像有利于区分不同的植被与地物类型,多尺度纹理特征的加入使整体分类精度提升了8.02%。此次提出的GA-RF、PSO-RF、GNDO-RF、ASO-RF和MPA-RF算法成功提升了研究区植被分类精度,与传统RF方法相比,总体分类精度(Overall Accuracy,OA)提升了1.3234%至2.3987%,其中MPA-RF方法取得了最高的图像分类精度,OA和 Kappa系数分别为88.9165%和0.8623。此次研究为高光谱遥感植被分类中特征提取、特征优化与分类算法选择提供了思路。

    Abstract:

    Hyperspectral remote sensing technology has been widely used in vegetation type mapping, and the integrated use of spectral and texture features of remote sensing data has become an effective way to improve the accuracy of vegetation classification, but the Hughes effect generated by the high-dimensional feature space composed of multi-scale texture features and hyperspectral features reduced the image classification accuracy, and the randomness of feature optimization algorithms such as Genetic Algorithm (GA) can also cause uncertainty in image classification accuracy. In order to solve those problems, a high-dimensional spectral-texture feature space was constructed by spectral features of ZY1 02D AHSI hyperspectral data and multi-scale texture features extracted using ZY1 02D VNIC data, taking the area around Zongjia Town, Dulan County, Qinghai Province, China as the research area. New hyperspectral image classification algorithms of GA-RF, PSO-RF, GNDO-RF, ASO-RF and MPA-RF were proposed, combining the traditional feature optimization algorithms such as GA algorithm, Particle Swarm Optimization (PSO) and Generalized Normal Distribution Optimization (GNDO) and the new feature optimization algorithms such as Generalized Normal Distribution Optimization (GNDO), Atom Search Algorithm (ASO) and Marine Predators Algorithm (MPA) with Random Forest (RF) classification algorithm. The proposed GA-RF, PSO-RF, GNDO-RF, ASO-RF and MPA-RF methods were applied to the vegetation type classification of the high-dimensional spectral-texture feature space. The results show that the texture images extracted with different window sizes and window movement directions have different advantages and disadvantages for vegetation type classification, and the inclusion of multi-scale texture features improves the overall classification accuracy of the data by 8.02% compared to the AHSI data. The proposed GA-RF, PSO-RF, GNDO-RF, ASO-RF and MPA-RF methods successfully improve the classification accuracy of the vegetation in the study area, and the overall classification accuracy (OA) is improved by 1.3234% to 2.3987%, compared with the traditional RF method. Of these, the MPA-RF method achieves the highest OA (88.9165%) and Kappa (0.8623). This study provides ideas for feature extraction, feature optimization and classification algorithm selection in hyperspectral remote sensing vegetation classification studies.

    参考文献
    相似文献
    引证文献
引用本文

帅爽.特征优化与随机森林算法结合的干旱区植被高光谱遥感分类方法[J].农业工程学报,,(). SHUAISHUANG. Hyperspectral image classification method for dryland vegetation by combining feature optimization algorithms and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),,().

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-26
  • 最后修改日期:2023-04-19
  • 录用日期:2023-06-02
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司