Abstract:Abstract: Plant protection spraying has been the main way to prevent crops from pests and diseases at present. However, the average utilization rate of pesticides is only 20% to 30% in manual sprayers and large-capacity rain spraying, particularly with water consumption of 600-1 200 L/hm2. The current pesticide spraying cannot fully meet the requirement of intensive agriculture in recent years. Among them, a large number of droplets with small particle sizes are susceptible to drifting by ambient wind. In this study, the mesh atomization of droplets was applied to reduce the wind drift for the high utilization rate of pesticides in the process of plant protection spraying. A systematic optimization was also made to investigate the secondary atomization characteristics of the droplets and the deposition effect of the droplets after the spray hits the mesh. The experimental variables were set as the pore size and the distance between the nozzle and the mesh. Phase Doppler Anemometry (PDA) was used to measure the velocity and particle size distribution of droplets after secondary atomization. A high-speed camera was selected to capture the spray angle. A 0.5 g/L methyl orange aqueous solution was prepared as a spray solution. The water-sensitive and filter tests were carried out to determine the droplet coverage and deposition amount, in order to evaluate the droplet deposition characteristics of the mesh atomization. The test results showed that: 1) the mesh effectively reduced the speed of the droplets. The average velocities of the measurement points were 1.80, 2.02, and 1.67 m/s under the mesh with pore sizes of 461, 350, and 227 μm, respectively. There were 23.40%, 13.90%, and 29.00% lower than those without the mesh (2.35 m/s). 2) The mesh reduced the particle size of the droplets. The maximum average particle sizes of the measurement points were 155.0, 165.6, and 173.3μm under the mesh with the pore size of 461, 350, and 227 μm, respectively, which were 19.5%, 14%, and 10% lower than those without the mesh (192.5 μm). 3) The spray angle of the droplet was varied in the pore size of the mesh and the distance between the nozzle and the mesh. Specifically, the maximum spray angle was 84.179° for the secondary atomized droplets at the pore size of 461 μm and the 10cm distance between the nozzle and the mesh, which was 20.366° larger than that without the mesh. 4) There was a great influence of pore size on the uniformity and penetration of the droplet deposition. The coefficient of variation of the deposition rate was between 33.51% and 88.08% at the sampling point of the mesh with the pore size of 350 and 227 μm, respectively, indicating similar deposition uniformity. By contrast, the maximum coefficient of variation of the deposition rate was 162.98% at the sampling points in each mesh layer with a pore size of 461 μm, indicating relatively less deposition uniformity. The better penetration of droplets was achieved in the mesh with the pore size of 350 μm, where the coefficient of variation of deposition between layers was between 0.8 % and 10.08 %. The better deposition was obtained in the mesh with the pore size of 461 μm in this case, compared with the pore size of 461 and 227 μm. There was no significant effect of the distance between the nozzle and the grid on the droplet coverage and deposition volume. In terms of the grids and large spraying droplets, the average droplet drift in the non-target area was 7.58 % of the deposition in the target area, indicating better performance after optimization. This finding can provide a strong reference to select the spraying and mesh parameters for the combination of plant protection UAV spray and mesh atomization.