Abstract:Environment conditions have been the most important influencing factors on the rice quality. It is a high demand to determine the positive or negative influences of the climate and weather on the rice quality, in order to effectively improve the added value and market competitiveness of rice. In this study, an evaluation model of rice climatic quality was established to provide the theoretical basis and technical support for the evaluation of the climatic influences on in Anhui Province of China. The key period and optimum temperature were clarified for the formation of rice climatic quality. Then, the rice climatic quality and comprehensive meteorological condition index were constructed using the rice quality data from the regional trials of three sites in the Hefei, Chuzhou, and Fengtai City in Anhui Province of China. Taking the mid-season indica and japonica rice as research objects, the daily meteorological observation data was collected from 2008 to 2018. The weighted summation and computer numerical simulation were carried out to preprocess the rough data. Finally, an evaluation model was established for the climatic quality of rice using regression analysis. The optimal model was then validated using the rice quality data from the sowing experiment by the stages in 2008. The results showed that the six indexes of climatic quality were achieved, including the percentage of head rice, chalkiness, transparency, alkali spreading value, gel consistency, and amylose content. The comprehensive index of meteorological conditions was obtained after the numerical simulation of three elements (average temperature, radiation, and diurnal temperature range). The key periods and optimum temperatures of climatic quality formation were 33 and 36 days after the date of full heading stage, while 24.8℃ and 23.0℃ for the mid-season indica rice and mid-season japonica rice, respectively. Four grades were divided into the "Extra excellent", "Excellent", "Good", and "General" for the climatic quality of the mid-season indica and japonica rice. Therefore, the climatic quality index larger than 3.40 was matched with the "Extra excellent" grade of indica rice. The "Excellent" grade was matched between 3.09 and 3.40, while the "Good" grade was in the range between 2.73 and 3.09. At last, the climatic quality index smaller than 2.73 was matched with the "General" grade of indica rice. Similarly, the climatic quality index for the japonica larger than 3.36 was matched with the "Extra excellent" grade. Specifically, the ranges between 3.08 and 3.36, 2.68 and 3.08, and smaller than 2.68 were matched with the "Excellent", "Good", and "General" grades, respectively. The model validation showed that the 80% accuracy of climatic quality was achieved in the mid-season indica and japonica rice. The climatic quality grade was mainly one grade lower than the actual one. The difference between the climatic and the actual quality of rice was attributed to the different evaluation indices and impact factors. Therefore, the climatic quality of rice can be expected to serve as an excellent indicator of the actual quality. In summary, the climatic quality of rice can be evaluated by meteorological factors, such as the average temperature, radiation, and diurnal temperature range during the rice growth period. The improved evaluation model can also be used to evaluate the climatic quality of mid-season indica and japonica rice.