无人机飞行高度对植被覆盖度和植被指数估算结果的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省重点研发计划项目(021C02023)


Effects of UAV flight height on estimated fractional vegetation cover and vegetation index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将无人机与多种成像传感设备相结合可实现田间作物表型信息的全面获取。针对田间复杂环境下无人机搭载多种成像传感设备在不同飞行高度处提取的作物信息具有差异性的问题,该研究着重探究了无人机搭载2种成像传感设备获取图像时,不同飞行高度对估算植被覆盖度以及植被指数结果的影响。首先为防止外界环境变化对获取图像质量造成干扰,通过最近邻插值算法将无人机飞行高度为25 m处获取的2个多光谱和可见光图像数据集分别退化为10个不同地面分辨率的模糊图像数据集,模拟无人机在不同飞行高度下获取的作物图像。然后获取50 m高度处的无人机图像数据集,通过皮尔逊相关性分析验证模拟数据集的有效性。最后采用随机森林模型估算不同数据集中的植被覆盖度,分类精度大于91%。结果发现,当植被覆盖度小于1/2时,随着地面分辨率的降低该指标不断被低估,反之则被高估。飞行高度50 m的真实图像与模拟图像估算植被覆盖度结果的相关系数为0.992 8,两者具有强相关性,模拟图像估算得到的植被覆盖度变化具备参考意义。植被指数估算结果中,首先对无人机图像数据集进行辐射校正、阈值分割等图像预处理,然后根据公式计算得到植被指数,最后通过假设性检验对10个图像数据集计算得出的植被指数进行分析。结果发现,可见光植被指数在飞行高度61 m时均具备显著性差异(P<0.05),在飞行高度42 m时没有差异(P>0.1),多光谱植被指数在10个高度下均没有显著性差异,因此为保证无人机获取数据的准确性与完整性,当无人机搭载该研究的两种相机获取作物信息时建议飞行高度为42 m。研究结果可为研究者利用无人机搭载多传感设备获取作物信息设定合适的飞行高度、减小作业成本提供参考。

    Abstract:

    Abstract: Accurate acquisition of crop information is very important for the real-time monitoring of crop growth status in crop breeding and agricultural precision management. The ever-increasing remote sensing (RS) and Unmanned Aerial vehicles (UAV) have been widely used to collect the big phenotypic data (especially image data) of various plants in a large area. Specific sensing devices are often used to obtain accurate and comprehensive information on crop growth. However, the diversity of sensing devices can bring a great challenge to the cooperation between them on UAV. It is very urgent to establish UAV flight parameters suitable for the complex field environment. In this study, an effective approach was developed to explore the effects of UAV flight height on the estimated fractional vegetation cover (FVC) and vegetation index (VI). The UAV can ultimately be utilized to collect the phenotypic data within the effective range under the multi-sensor combinations based on suitable flight height. The multispectral and high-resolution RGB cameras were simultaneously mounted on the UAV to acquire the images at a speed of 2.5 m/s. Among them, the heading and the side overlaps were set as 75% and 60%, respectively, particularly for the possibility of successful image stitching. The initial flight heights were set as 25 and 50 m, in order to exclude the wind field generated by the high-speed rotation of the UAV's paddles from disturbing the crop. The high ground resolution (GR) images were collected by the UAV at the low flight height. These images were then degraded by image processing into a series of images with different GR. The simulation was finally carried out to predict the crop images obtained by the UAV at different flight heights. As such, the impact of environmental changes on image quality was reduced, such as the light intensity. The FVC of every sample plot was estimated using Random Forest (RF). The results show that the vegetation classification accuracy was greater than 91%. The regular FVC changes were found in the different GR, due to the image blending phenomenon. Once the FVC was less than half, the indicator was constantly underestimated with the decrease of the GR. Otherwise, the indicator was overestimated. Pearson correlation analysis was also performed on the real and simulated images at a flight height of 50 m, in order to verify the feasibility of simulated images for FVC estimation. The results show that the Pearson correlation coefficient was 0.992 8 between the real and simulated images at a flight height of 50 m, indicating a high correlation. Moreover, a similar regular variation was also found in the FVC that was estimated by the real images. Five VIs (the combination of spectral reflectance) were calculated to enhance vegetation information and weaken non-vegetation one. The hypothesis testing was used to verify whether the vegetation indices had significant differences. The results show that significant differences (P<0.05) occurred in the RGB VIs at a ground resolution of 15 mm/pixel (i.e., the flight height of 61 m), whereas no difference (P>0.1) was found at 10 mm/pixel (i.e., flight height of 42 m). Meanwhile, the multispectral VIs were not significantly different at both ground resolutions (P>0.5). Fortunately, the flight height range within 42 m presented less impact on the acquisition of RGB spectral information. Consequently, a flight height of less than 42 m can be the optimal parameter to collect the crop information using the two devices at the same time. Anyway, the spectral and spatial information using other devices at higher flight heights can also be further investigated in the future. The finding can provide a strong reference for setting the suitable flight height to obtain the crop information, in order to reduce the operating costs using multi-sensor equipment carried by UAVs.

    参考文献
    相似文献
    引证文献
引用本文

何勇,杜晓月,郑力源,朱姜蓬,岑海燕,许丽佳.无人机飞行高度对植被覆盖度和植被指数估算结果的影响[J].农业工程学报,2022,38(24):63-72. DOI:10.11975/j. issn.1002-6819.2022.24.007

He Yong, Du Xiaoyue, Zheng Liyuan, Zhu Jiangpeng, Cen Haiyan, Xu Lijia. Effects of UAV flight height on estimated fractional vegetation cover and vegetation index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022,38(24):63-72. DOI:10.11975/j. issn.1002-6819.2022.24.007

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-05
  • 最后修改日期:2022-11-11
  • 录用日期:
  • 在线发布日期: 2023-01-20
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司