一种自适应图像融合数据增强的高原鼠兔目标检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(62161019,62061024)


Adaptive image fusion data augmentation method for Ochotona curzoniae object detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高原鼠兔目标检测是统计高原鼠兔种群数量和研究其种群动态变化的基础。基于深度卷积神经网络的目标检测模型在训练数据缺乏时会导致模型的检测性能下降,甚至出现过拟合现象。基于GAN(Generative Adversarial Network)的数据增强方法可以生成与原始数据集同分布的目标图像,能够有效解决训练数据缺乏的问题。然而GAN生成的目标图像与背景图像相融合时采用逐像素相加或直接像素替换生成新图像的方法会造成融合图像边界突出,且当被融和的目标图像和背景图像的颜色差异较大时,会产生融合图像的目标颜色与实际场景不符的问题。针对以上问题,该研究提出了一种基于多尺度梯度生成对抗网络MSG-GAN(Multi-Scale Gradients for Generative Adversarial Networks)的自适应图像融合数据增强方法。首先将训练样本中的目标图像提取出来,用于训练多尺度梯度生成对抗网络MSG-GAN,使其能够生成新的目标图像;其次,采用颜色直方图自适应地选择颜色相近的目标图像和背景图像;然后,采用泊松融合方法对自适应选择的目标图像和背景图像进行融合得到新图像,从而使得融合图像的目标边界更为平滑,减小融合图像中目标与背景之间的颜色差异;最后,将融合图像加入到原始训练集得到增强训练集,对目标检测模型进行训练。对自然场景下的高原鼠兔目标检测的试验结果表明:该研究所提出的数据增强方法训练的目标检测模型的平均精度为89.3%,高于未数据增强方法 (86.5%)、Cutout 方法(87.2%)、Random Erasing 方法(87.9%)、Kisantal方法(87.0%)和Maeda方法(87.9%)增强数据集训练的目标检测模型的平均精度,能有效提高目标检测模型对高原鼠兔的检测性能。

    Abstract:

    Abstract: The object detection of Ochotona curzoniae is the basis to count the population and study the population dynamics. In addition, the object detection model based on the deep convolutional neural network requires a lot of sample training. However, the habitat environment of Ochotona curzoniae is harsh and sensitive to change in the external environment, so it is difficult to collect images, resulting insufficient training data on Ochotona curzoniae. The data augmentation method based on Generative Adversarial Network can generate new object images with the same distribution as the original data set, which can effectively solve the problem of insufficient training data for the object detection model. However, when the object image generated by Generative Adversarial Network is fused with the background image, the method of adding pixel by pixel or directly replacing pixel to generate a new image will cause the edge of the fused image to protrude, and when the color difference between the fused target image and the background image is large, the object color of the fused image will be inconsistent with the actual scene. To solve the above problems, this paper proposed an adaptive image fusion data augmentation method based on multi-scale gradients for generative adversarial networks. Firstly, object images are extracted from the training samples and are used to train Multi-Scale Gradients for Generative Adversarial Networks to generate new object images. Secondly, a color histogram is used to select object images and background images with similar colors adaptively. Then, the Poisson fusion method was adopted to fuse the adaptive object image and background image to get a new image, which made the object boundary of the fused image smoother and reduced the color difference between the object and background. Finally, the fusion image was added to the original training set to obtain the augmented training set, and the object detection model was trained. Experimental results of Ochotona curzoniae object detection in natural scenes showed that: the average accuracy of the object detection model trained by the data augmentation method proposed in this paper was 89.3%, which was higher than the average accuracy of the non-data augmentation method. It can improve the detection performance of the object detection model to the Ochotona curzoniae effectively.

    参考文献
    相似文献
    引证文献
引用本文

陈海燕,甄霞军,赵涛涛.一种自适应图像融合数据增强的高原鼠兔目标检测方法[J].农业工程学报,2022,38(Z):170-175. DOI:10.11975/j. issn.1002-6819.2022. z.019

Chen Haiyan, Zhen Xiajun, Zhao Taotao. Adaptive image fusion data augmentation method for Ochotona curzoniae object detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022,38(Z):170-175. DOI:10.11975/j. issn.1002-6819.2022. z.019

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-10
  • 最后修改日期:2022-10-09
  • 录用日期:
  • 在线发布日期: 2023-02-07
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司