基于PBM-YOLOv8的水稻病虫害检测算法
DOI:
作者:
作者单位:

长春理工大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

吉林省科技发展计划项目(20210201021GX)


Method for the detection of rice disease using PBM-YOLOv8
Author:
Affiliation:

Changchun University of Science and Technology

Fund Project:

Jilin Province Science and Technology Development Plan Project under Grant 20210201021GX.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高水稻病虫害检测精度,解决病虫害种类繁多、尺度不一、生长环境复杂导致的误检漏检问题,便于模型在边缘设备进行部署,提出一种基于改进YOLOv8的水稻病虫害检测方法PBM-YOLOv8。首先使用部分卷积(Partial Convolution, Pconv)设计PCBlock结构,替换YOLOv8特征提取模块中的瓶颈(Bottleneck)结构,以减少模型参数量,提升检测速度;其次为了减少非相邻层语义信息特征融合时的稀释,在颈部网络增加平衡特征融合层,重构特征金字塔为平衡特征金字塔(balanced feature pyramid, BFP),对融合的特征层进行特征再提取,并引入嵌入高斯非局部注意力(Embedded Gaussian Non-local Attention, EGNA)消除多层融合导致的混叠效应,最大程度减小特征丢失;最后将损失函数更换为MPDIOU,改善因样本差异性大而导致的检测框失真,同时降低模型训练的计算负担。实验结果表明,改进模型PBM-YOLOv8在水稻病虫害数据集上取得了更为优异的试验效果,相较于原始YOLOv8n基线模型精确度P及平均准确率均值mAP分别提高了1.3和1.1个百分点。将PBM-YOLOv8部署在RK3588上经多线程优化后检测速度可达到71.4FPS,满足实际应用的需求,可实现对水稻病虫害的实时精准检测。

    Abstract:

    To improve the accuracy of rice pest and disease detection and address issues such as the numerous types of pests and diseases, varying scales, and complex growth environments that lead to false positives and missed detections, while also facilitating model deployment on edge devices, we propose a rice pest and disease detection method based on an improved YOLOv8, called PBM-YOLOv8. Firstly, the Partial Convolution (PConv) is used to design the PCBlock structure, replacing the bottleneck structure in the YOLOv8 feature extraction module to reduce model parameters and improve detection speed. Secondly, to minimize the dilution of semantic information during feature fusion between non-adjacent layers, a balanced feature fusion layer is added to the neck network to reconstruct the feature pyramid into a balanced feature pyramid (BFP). This involves re-extracting features from the fused feature layers and introducing Embedded Gaussian Non-local Attention (EGNA) to eliminate aliasing effects caused by multi-layer fusion, thereby minimizing feature loss. Finally, the loss function is replaced with MPDIOU to address detection box distortion caused by significant sample differences while reducing the computational burden of model training. Experimental results show that the improved PBM-YOLOv8 model achieves superior results on the rice pest and disease dataset, with precision (P) and mean average precision (mAP) increased by 1.3 and 1.1 percentage points, respectively, compared to the original YOLOv8n baseline model. After multi-thread optimization, the detection speed of PBM-YOLOv8 deployed on RK3588 can reach 71.4 FPS, meeting the requirements of practical applications for real-time and accurate detection of rice pests and diseases.

    参考文献
    相似文献
    引证文献
引用本文

刘鹏,张天翼,冉鑫,史佳霖,毕誉轩,王彩霞.基于PBM-YOLOv8的水稻病虫害检测算法[J].农业工程学报,,(). liupeng,张天翼,ranxin, shijialin, biyuxuan,王彩霞. Method for the detection of rice disease using PBM-YOLOv8[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),,().

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-28
  • 最后修改日期:2024-08-29
  • 录用日期:2024-09-03
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司