基于MOP-PLUS-InVEST模型的碳储量多情景模拟及驱动机制分析
DOI:
作者:
作者单位:

昆明理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(42301304) ;地理信息工程国家重点实验室、测绘科学与地球空间信息技术自然资源部重点实验室联合资助基金项目(编号2024-04-14);昆明理工大学校人培基金(KKZ3202421124)


Multi-scenario simulation of carbon stocks based on the MOP-PLUS-InVest model and analysis of driving mechanisms
Author:
Affiliation:

kunming university of science and technology

Fund Project:

Research on Multi-scale Coupling and Multi-Objective Synergistic Optimization of “Three Life Spaces” in Dianzhong Urban Agglomeration

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    碳储量是陆地生态系统的重要组成部分,其时空分布特征及驱动机制对区域可持续发展的推进具有重要意义。现有研究主要聚焦于历史和现状的碳储量分析,但对未来碳储量的研究,尤其是在多种土地利用情景下的刻画,仍显不足。这种局限性削弱了碳储量研究对区域可持续发展目标的实际指导作用。本研究构建了MOP-PLUS-InVEST耦合模型,定量预测了滇中城市群自然发展情景(natural development scenarios,NDS)、生态保护情景(ecological protection scenarios,EPS)、经济发展情景(economic development scenarios,EDS)、可持续发展情景(sustainable development scenarios,SDS)4种情景下的土地利用和碳储量的时空分布格局。同时,采用最优参数地理检测器(optimal parameters geographical detector, OPGD)模型探究碳储量空间分异的驱动机制,为优化低碳发展路径提供了新思路。结果表明:1)2000—2020年,碳储量累计损失1.95×107t,尤其在2010—2020年,由于城市化进程加快,损失尤为严重;在各类土地利用类型中,草地的碳储量损失最大;2)在未来情景下,4种情景中的建设用地均呈现持续增长趋势,而碳储量则有所下降。其中,生态保护情景的碳储量降幅最小,减少了2.84×106t,经济发展情景的碳储量降幅最大,减少了1.678×107 t ;4种情景的碳储量空间分布具有一定相似性,高值区主要集中在研究区西部和南部,低值区主要分布在中部;3)碳储量受多种因素共同驱动,其中归一化植被指数和夜间灯光指数是碳储量空间分异的主导因子,自然因素和社会因素对碳储量空间分异的影响程度不同,其中人类活动在碳储量变化中起着关键作用。本研究结果可为滇中城市群国土空间规划实施评价、“双碳”目标及可持发展目标的实现提供理论和技术支持。

    Abstract:

    Carbon stock is an important component of terrestrial ecosystems, and its spatial and temporal distribution characteristics and driving mechanisms are of great significance to the advancement of regional sustainable development. Existing studies have mainly focused on the analysis of historical and current carbon stocks, but research on future carbon stocks, especially the portrayal under multiple land use scenarios, is still insufficient. This limitation weakens the practical guidance of carbon stock studies for regional sustainable development goals. In this study, we constructed the MOP-PLUS coupled model, quantitatively predicted the spatial and temporal distribution patterns of land use under four scenarios, namely, the Natural Development Scenarios(NDS), Ecological Protection Scenarios(EPS), Economic Development Scenarios(EDS), and Sustainable Development Scenarios(SDS) of the Central Yunnan Urban Agglomeration (CYUA), and simulated and assessed the carbon stock in the study area by using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST), and described the spatial and temporal evolution characteristics of the study area's carbon stock by using the visualization mapping. The spatial and temporal evolution of carbon stocks in the study area was characterized by visual mapping. Finally, the Optimal Parameters Geographical Detector (OPGD) was used to explore the driving mechanism of the spatial differentiation of carbon stocks, which provides new ideas for optimizing low-carbon development. The results show that: 1) from 2000 to 2020, the carbon stock lost 1. 95×107t cumulatively, of which the loss was particularly serious from 2010 to 2020 due to the accelerated urbanization process; among different land use types, grassland has the highest loss of carbon stock; 2) in the future scenarios, the trend of construction land in all four scenarios shows a continuous growth, and carbon stock In the future scenario, the construction land under all four scenarios shows a continuous growth trend, and the carbon stock decreases. Among them, the ecological protection scenario showed the smallest decrease in carbon stock, with a decrease of 2. 84×106 t, and the economic development scenario showed the largest decrease, with a decrease of 1. 678×107 t. The spatial distributions of carbon stock under the four scenarios were similar, with the high-value areas mainly concentrated in the western and southern parts of the study area, and the low-value areas mainly located in the central part of the study area; 3) Carbon stock was driven by a variety of factors, including normalized vegetative cover, vegetation cover, and vegetation cover. Carbon stock is driven by a variety of influencing factors, among which the Normalized Vegetation Index and the Nighttime Lighting Index are the dominant factors in the spatial variability of carbon stock, while natural and social factors have different degrees of influence on the spatial variability of carbon stock, and human activities play a crucial role in carbon stock changes. The results of this study can provide a theoretical basis for the formulation of the Carbon peaking and carbon neutrality goal and sustainable development goal of the urban agglomeration in central Yunnan, as well as technical support for the evaluation of the implementation of the urban agglomeration's territorial spatial planning.

    参考文献
    相似文献
    引证文献
引用本文

张龙江,陈国平,林伊琳,赵俊三,刘俸汝,彭苏芬.基于MOP-PLUS-InVEST模型的碳储量多情景模拟及驱动机制分析[J].农业工程学报,,(). zhanglongjiang, CHEN Guoping, LIN Yilin, ZHAO Junsan, LIU Fengru, PENG Sufen. Multi-scenario simulation of carbon stocks based on the MOP-PLUS-InVest model and analysis of driving mechanisms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),,().

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-07
  • 最后修改日期:2024-11-07
  • 录用日期:2024-11-25
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司