基于改进YOLO v8的草莓识别与果梗采摘关键点检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4;S24

基金项目:

江苏省农业科技自主创新资金(CX(21)2006)


Recognizing strawberry to detect key points for peduncle picking using improved YOLO v8 model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决草莓采摘机器人工作过程中果梗采摘点定位精度低和遮挡草莓识别困难等问题,该研究提出一种改进后YOLO v8算法与Pose关键点检测技术相结合的草莓识别定位方法。通过对YOLO v8进行优化,引入BiFPN(bidirectional feature pyramid network)和GAM(generalized attention module)模块以强化模型的双向信息流,动态分配特征权重,并专注于小目标特征的提取和强化被遮挡区域特征,旨在提升模型复杂环境中采摘点定位准确率和遮挡识别的预测准确性。试验结果显示,相比于原始模型,经过改进的YOLO v8-pose模型在草莓识别准确率(precision,P)、召回率(recall,R)、平均精度(mean average precision,mAP)及关键点平均精度(mean average precision - key point,mAPkp)上分别提高6.01个百分点、1.98个百分点、6.67个百分点和7.85个百分点,基于关键点检测的果梗采摘点在XYZ方向定位误差分别为1.4mm、1.4mm和2.2mm。此外,根据草莓遮挡重叠区域面积对草莓遮挡程度分类,利用不同遮挡程度对模型性能验证,在遮挡情况下改进后YOLO v8-pose,mAPkp比原模型提高9.78个百分点。基于该研究所提出的视觉模型,机器人在田间试验下的采摘成功率为95%,单个草莓的采摘耗时10 s,为实现机器人精准采摘提供重要的技术支持。

    Abstract:

    Robotic harvesting had been constrained by the low positioning accuracy of strawberry stem picking points and the significant challenge of identifying occluded strawberries. In this study, we proposed an improved YOLO v8 model combined with Pose key-point detection for enhanced strawberry recognition and localization. The accuracy of picking point localization was also improved, especially for occluded strawberries in complex environments. To optimize the YOLO v8 model, we introduced the Bidirectional Feature Pyramid Network (BiFPN) and the Generalized Attention Module (GAM), which enhanced bidirectional information flow, dynamically allocated feature weights, and focused on extracting features of small targets and enhancing the features of occluded regions. As a result, the model's ability to accurately detect and localize strawberries in complex environments was significantly improved.Experimental results showed that the improved YOLO v8-pose model outperformed the original model in several metrics: the Precision (P) increased by 6.01 percentage points, Recall (R) by 1.98 percentage points, mean Average Precision (mAP) by 6.67 percentage points, and mean Average Precision for key points (mAPkp) by 7.85 percentage points. The positioning accuracy for strawberry stem picking points, based on key-point detection, achieved errors of just 1.4 mm in both the X and Y directions and 2.2 mm in the Z direction. Additionally, the occlusion level was classified according to the overlap area of occluded strawberries, and the model's performance under varying occlusion conditions was assessed. Under these conditions, the mAPkp of the improved YOLO v8-pose model increased by 9.78 percentage points compared to the original model.Field trials further validated the model's effectiveness, with the strawberry-picking robot achieving a 95% success rate, picking each strawberry within 10 seconds. The high success rate and short picking time demonstrated the practicality of the model in real-world agricultural settings, indicating its high efficiency and accuracy. The improved YOLO v8 model with key-point detection accurately and robustly recognized strawberries, leveraged multi-scale features with the BiFPN architecture, and focused attention on relevant regions with the GAM, especially for occluded strawberries. These advancements significantly improved overall performance in precision, recall, and average precision, particularly under occlusion scenarios.In conclusion, these advanced techniques were integrated into a more capable strawberry-picking robot system. The enhanced accuracy and efficiency achieved in recognizing and localizing strawberries, even in challenging occlusion scenarios, highlighted the system's potential for practical agricultural applications. The findings contributed significantly to automated strawberry harvesting in agricultural robotics, paving the way for more efficient and cost-effective farming solutions in sustainable production.

    参考文献
    相似文献
    引证文献
引用本文

杨震宇,汪小旵,祁子涵,王得志.基于改进YOLO v8的草莓识别与果梗采摘关键点检测[J].农业工程学报,2024,40(18):167-175. DOI:10.11975/j. issn.1002-6819.202405044

YANG Zhenyu, WANG Xiaochan, QI Zihan, WANG Dezhi. Recognizing strawberry to detect key points for peduncle picking using improved YOLO v8 model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2024,40(18):167-175. DOI:10.11975/j. issn.1002-6819.202405044

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-09
  • 最后修改日期:2024-08-13
  • 录用日期:
  • 在线发布日期: 2024-09-11
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备06025802号-3
农业工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司