•农业水土工程•

地膜残留量对棉田土壤水分分布及棉花根系构型的影响

林涛^{1,3},汤秋香²,郝卫平¹,吴凤全²,雷蕾², 严昌荣¹,何文清¹,梅旭荣^{1*}

(1. 中国农业科学院农业环境与可持续发展研究所,北京100081;

2. 新疆农业大学农学院,乌鲁木齐 830052;3. 新疆农业科院 经济作物研究所,乌鲁木齐 830091)

摘要:根系是获取水分和养分的重要器官,并通过根区环境的相互作用影响作物的生产效率,分析地膜残留量对土壤水分及根系构型的影响对认识、分析和评价残膜污染,发展残膜防控技术具有重要意义。该文通过2a田间模拟试验,设置了0(A)、225(B)、450(C)、675(D)和900kg/hm²(E)5个地膜残留量处理,分析了地膜残留量对土壤水分分布及根系构型的影响。结果表明,残膜量对土壤水分,根系形态、产量及水分利用效率均有一定影响。根系生物量的80%~95%分布于0~30 cm的土层范围,该区域是土壤水分分布及棉花根系构型受地膜残留量影响较显著的区域。无残膜(0kg/hm²)处理的土壤水分状况、根系构型显著优于高残膜量(900kg/hm²)处理。随着残膜量的增加,生育期内0~50 cm土壤平均含水率逐渐降低,各土层出现不同程度的水分亏缺,并产生水分优势流或水分阻隔效益。残膜量的增加显著降低了根系生物量、根质量密度、根长密度、根表面积密度、根系体积和根系平均直径。残膜含量的增加显著降低了产量和水分利用效率。2a数据表明,与A处理相比,E处理生育期土壤含水率平均降低了37.36%,根质量密度平均降低了70.73%,根长密度平均降低了61.35%、根表面积密度平均降低了18.50%和13.69%。因此建议采取合理的棉田净土措施,降低残膜污染对土壤水分及根系构型的影响,有利于提升产量和水分利用效率。

关键词:土壤水分;根系;棉花;地膜残留量;产量及产量构成

doi: 10.11975/j.issn.1002-6819.2019.19.014

中图分类号:S275 文献标志码:A 文章编号:1002-6819(2019)-19-0117-09

林涛,汤秋香,郝卫平,吴凤全,雷蕾,严昌荣,何文清,梅旭荣. 地膜残留量对棉田土壤水分分布及棉花根系构型 的影响[J]. 农业工程学报,2019,35(19):117-125. doi:10.11975/j.issn.1002-6819.2019.19.014 http://www.tcsae.org Lin Tao, Tang Qiuxiang, Hao Weiping, Wu Fengquan, Lei Lei, Yan Changrong, He Wenqing, Mei Xurong. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 117-125. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.19.014 http://www.tcsae.org

0 引 言

塑料地膜覆盖是水资源短缺地区促进农业增产、增收的一项关键性措施。以缺水为农业主要限制因素的西北干旱地区表现出更高的增产和节水效益^[1]。研究表明地膜覆盖技术对中国国农作物增产和水分利用效率提升的贡献率已达24.32%和27.63%^[2]。该技术已被证实能够短期内有效的提高地表温度,减少土壤水分蒸发从而改善了土壤的水热状态^[3],抑制杂草生长^[4],从而极大地促进了作物的生长和产量形成。中国是世界上使用地膜

收稿日期:2019-03-12 修订日期:2019-09-10

最多的国家,近30a来所有的省份和地区地膜覆盖强度 均呈上升趋势,1991年到2017年,中国地膜用量从3×10⁵t 急剧增加到14.7×10⁵t,覆盖面积184×10⁵hm²,用量占世 界需求的60%以上^[2]。未来10a中国的地膜的用量预计 还将以每年7%的速度保持高速增长^[5]。因此地膜覆盖 技术在保障中国粮棉安全方面发挥着举足轻重的作用。

然而聚乙烯(polyethylene, PE)地膜在土壤中极难分 解,又缺乏有效回收措施,造成了一系列残膜污染危害^[6], 且持续多年^[7]。前人研究表明新疆残膜总量为3.43×10⁵t, 占覆盖总量的15.3%,其中棉花田地膜残留量最大,达 158.4 kg/hm²,且以每年15.69 kg/hm²的速度累积^[8]。其中 石河子,塑料薄膜残留量在121.85~352.38 kg/hm^{2[9]},吐 鲁番地区最大残留量达502.2 kg/hm²,超过半数棉田地膜 残留量高于国家标准(75 kg/hm²)^[8]。残膜污染可能对作物 生产产生一系列负面影响,包括;1)降低了土壤孔隙度,中 断土壤结构,阻碍了水肥运动。随着残膜量的增加表土层 的初始含水率、容重、总孔隙度等方面存在显著差异^[4]。

基金项目:国家自然科学基金(31460143;31370522);新疆维吾尔自治 区科技支疆项目(2016E02078)

作者简介:林 涛,副研究员,博士,研究方向为农业水土工程。Email: 27427732@qq.com

[※]通信作者:梅旭荣,研究员,博士生导师,研究方向为旱作节水农业。 Email:meixurong@caas.cn

土壤容重下降,孔隙度上升[4,10],排大孔隙土壤水的当量孔 径体积占比增大,从而降低了土壤保水能力[11-12];清除残 膜后,0~20 cm 土层水分平衡时间减少了 45%~50% [4.13]。 2)降低播种质量。残膜污染棉田,烂种率达6.92%,烂芽 率达5.17%,棉苗侧根比正常减少4.8~7.6条[14]。3)抑制了 根系的扩展和分布,最终导致减产[4,14-15]。研究表明[2],残 膜量为>240 kg/hm²时,对玉米、马铃薯和棉花平均减产率 为16.10%。Xie 等认为^[10],当残膜量>720 kg/hm²时,玉米 根系生长受阻明显,产量明显下降。Zou等研究认为¹⁰,当 残膜量>80 kg/hm²,西北地区大棚番茄产量将会急剧下降。 颜林等研究表明^[17],棉花重茬12~15 a,残膜量为283.65~ 283.80 kg/hm²,减产25.3%~47.87%。毕继业等^[18]通过评 价模型分析认为当使用地膜覆盖技术36a后,地膜覆盖的 增产率将小于地膜残留造成的减产率。4)残膜污染降低 了土壤酶活性和微生物的多样性,从而抑制了土壤肥 力[4,19-20],不仅会增加温室气体的排放[21-22],还会增加农药 的吸附量,导致食品安全风险[23]。此外残膜阈值与减产幅 度的关系因作物、种植管理技术和生态区域而产生较大的 差异[2,8,24]。

根系是获取水分和养分的重要器官,并通过根区环 境的相互作用,影响作物的生产效率[25-26]。根系生长发 育受土壤结构与水肥等条件的强烈影响,残膜的含量和 分布状况导致土壤结构、通气状况、水肥环境等要素发 生改变,因而影响作物根系的正常生长¹⁹。有关根系功 能的有用信息可以通过研究不同残膜含量条件下,根长 密度、根质量密度、表面积密度等参数的动态变化来获 得,或者通过土壤含水率和养分吸收的监测来简介评估 根系在不同土壤深度的活力来获得[25-28]。因此,建立土 壤水分和根系构型的关系是预测不同残膜含量条件 下,作物水分和养分吸收的必要手段。尽管残膜污染 破坏土壤结构,降低水肥运移速率,阻碍根系生长,已 经得到广泛认同,但是,以往的许多研究都集中残膜含 量与产量之间的关系上,由于技术和经济的限制,残膜 污染对根区水分及根系生长发育的综合研究较少,改变 水分分布和根系构型的过程仍然缺少量化研究。因此, 本研究的目标是深入了解不同残膜含量条件下水分的 有效性对棉花根系生长发育的影响,及整个根系在收获 时的分布状态。本研究对提高绿洲棉田残膜污染认识、 开展风险预警评估、发展残膜防控技术等均具有重要的 科学意义。

1 材料与方法

1.1 研究区概况

试验于2014-2015年在新疆阿瓦提县新疆农科院 棉花综合试验基地(40°06'N、80°44'E,海拔1025m)进 行。试验区位于塔里木盆地西北缘阿克苏灌溉绿洲,属 于典型的温带大陆性干旱气候,年平均降水量46.7mm, 蒸发量2900mm,蒸发降水比>50,日照时数2679h,年 均气温10.4℃,≥10℃年积温为3988℃,无霜期211d。

试验区土壤(0~40 cm)采用 Malvern Mastersizer

2000 激光粒度分析仪(Malvern Instruments Ltd., UK)测得, 粉粒、砂粒、黏粒质量分数分别为36.42%、60.72%、2.86%, 查美国农业部质地三角形图,供试土壤质地为粉砂壤土^[20]。土壤平均干容重为1.48 g/cm³, 田间持水率(质量分数)为22.5%, 凋萎系数7.3%, 土壤有效水15.2%。土壤中有机质10.6 g/kg, 全氮1.79 g/kg, 碱解氮43.80 mg/kg, 速效磷21.4 mg/kg, 速效钾207.47 mg/kg, 总盐分1.02%。地下水位40~50 m, 地下水不能补给到作物根系分布层, 向上补给量忽略不计。

1.2 试验设计及过程

试验采用随机区组设计,设置5个残膜水平:0(A)、 225(B)、450(C)、675(D)和900 kg/hm²(E),采用直径 30 cm,高50 cm,体积0.035 m³的播种桶,模拟棉田地膜 残留及分布状态,对应的残留地膜量分别为0、1.6、3.2、 4.8和6.4 g/筒。供试棉花品种为新陆中47号,生育时期 划分如表1所示,采用1膜2管6行机采棉种植模式,滴 灌带间距76 cm,滴头间距25 cm,滴头流量2.1 L/h。株 行配置(((10+66+10)+66)×11 cm。PE(polyethylene,PE) 地膜宽2.05 m,每个处理重复4次,共20桶,每桶9穴, 每穴点播3粒种子,待出苗后保留1株。桶内土壤取自 农田,采用土壤紧实度仪(SC900,USA)控制容重分层 回填。

为确保模拟参数的准确性,播前按照五点取样法选 取1m×1m×1m样方,每层10cm进行取样,测定容重、残 膜含量和分布等级。经过实地调查,本研究区残膜自然分 布状态下有3个尺寸等级,其中小膜面积<4cm²,中膜面积 4~25 cm²,大膜面积>25 cm²,分配比例为7:2:1,平均残膜量 为225 kg/hm²,主要分布于0~30 cm的土壤中。桶四周为 同期播种的大田,为减小筒栽与大田环境间的差异,填埋前 先去除桶底和3/4面积的桶壁,用孔径 18 μm 尼龙网袋套 在整个桶上,再将桶埋于预先挖好的沟槽中。参照王亮^[29] 的方法进行残膜回填和分布状态控制。具体做法是按各 层拟定残膜量在30 cm土壤深处均匀铺1层,上面覆土10 cm, 于20 cm深处铺设1层残膜,继续覆土10 cm,最后于10 cm 深处撒上残膜后回填土壤,保持桶口与地面相平,人工铺设 残膜与自然分布状态相接近。

表1 2014 和 2015 年棉花生育期划分 Table 1 Division of growth period for cotton in 2014 and 2015

年份 Years	苗期 Seedling	蕾期 Bud stage	Bud stage 花铃期	吐絮期 Boll opening
2014	05-10-06-05	06-06-07-09	07-10-08-20	08-21-09-25
2015	04-25-05-25	05-26-06-24	06-25-08-14	08-15-09-21

参照当地传统经验,生育期灌溉8~10次,6月下旬开 始,8月中旬结束,灌溉定额400 mm左右,灌溉间隔7~8 d, 灌水定额30~45 mm(空气温度及灌溉降水情况见图1)。 底肥一次性投入磷酸二铵($P_2O_553.8\%$,N21.2%)450 kg/hm², 硫酸 钾(K_2O 51%) 225 kg/hm²,尿素 300 kg/hm² (N 46.4%)。生育期采用"一水一肥"的方式追施尿 素 600 kg/hm²,其他管理同大田。

Note:Ta is air temperature, ave, max and min are average, maximum, minimum. 图 1 2014和2015年棉田空气温度及灌溉降水情况

Fig.1 Air temperature, rainfall and irrigation of cotton field in 2014 and 2015

1.3 测试项目及方法

1.3.1 棉花干质量测定和根系扫描分析及经济性状的测定 于吐絮期,将盆栽筒连同根袋一起取出,分成地上部

与根系部分,清水冲洗根系,自然晾干后用扫描仪在 300 dpi像素下扫描成黑白TIF图像,用DT-SCAN 2.04图 像分析软件(Delta-T, Co., Ltd. UK)计算出根长、根体积、 根表面积、根直径、根长密度和根表面积密度等形态特征 指标。扫描后的根系,85 ℃烘干至恒质量计算根质量密 度。同时,在棉花吐絮后,取长势均匀植株3株,采收中 部棉铃,进行单铃质量和衣分测定。

1.3.2 土壤体积含水率的测定

观测时期位于开花期至吐絮期(6月25日—9月2日), 采用时域反射仪MinTrus(SEC, Co., Ltd. USA)进行土壤 体积含水率的无损监测。探头预先埋于桶中,每天14:00, 采集相同剖面10、20、30、40和50 cm土层的体积含量数据, 重复3次,仪器自动计算各位点体积含水率的平均值。

1.3.3 水分利用效率

棉田水分利用效率(water use efficiency, WUE)的计 算方法如下^[20-21]:

$$WUE = \frac{Y}{ET}$$
(1)

$$W = \sum_{i}^{n} h_{i} \rho_{i} \cdot b_{i} \cdot 10/100 \tag{2}$$

$$ET = (W_{i1} - W_{i2}) + M + P_0 + KDR$$
$$= (W_{i1} - W_{i2}) + M + P_0 + K$$
(3)

式中WUE为水分利用效率,kg/(hm²·m³);Y为籽棉产量,kg/hm²;ET为阶段耗水量,mm;W为土壤储水量,mm; h_i 为土壤深度,cm; ρ_i 为土壤容重,g/cm³; b_i 为土壤水分 质量分数;n为土层序号,*i*=10,20,30,...,60。M为时段 内灌溉量,mm; P_0 为时段内的有效降雨量,mm;K为时 段内的地下水补给量,mm,当地下水埋深大于2.5 m时 可以不计(本试验地下水埋深在5 m 以下,无地下水补 给)。D为深层渗漏量,mm;R为地表径流量,mm。D、R 均忽略不计。

1.3.4 数据分析工具

使用 Microsoft Excel 2017 和 SigmaPlot Version 12.5

(Systat Software, Inc. USA)进行计算并编制图表。采用 SPSS 19.0(SPSS Inc., Chicago, IL, USA)进行方差分析。

2 结果与分析

2.1 残膜对土壤含水率的影响

不同残膜处理下棉田生育期0~50 cm 土层日平均体 积含水率(SWC)如图2所示。随着残膜量的增加SWC 逐渐降低。2014年A、B、C、D和E处理的平均SWC分别 为30.59%、30.19%、27.54%、27.45%和19.50%。2015年 与之对应的平均SWC分别为30.74%、29.34%、28.05%、 25.64%和18.66%。与A处理相比2014年B、C、D和E处 理的平均SWC依次降低1.32%、8.77%、9.04%和 35.41%,2015年依次降低4.54%、8.74%、16.60%和 39.31%。其中开花前A、B处理的SWC明显高于其他处 理,开花后在灌溉的补给作用下,上述指标与C、D处理 的差距减小,但仍明显高于E处理。上述分析表明,随着

注:A、B、C、D、E分别表示残膜量为0、225、450、675、900 kg·hm⁻²,下同。 Note: Residual content in A, B, C, D and E is 0, 225, 450, 675 and 900 kg·hm⁻², respectively. Same as below.

图 2 2014和2015年不同残膜处理下棉田日平均体积含水率 Fig.2 Dynamics of daily average soil volumetric water content (SWC) of cotton field at different residual plastic treatments in 2014 and 2015

残膜量的增加SWC逐渐降低,其中开花前土壤阶段耗水 量受残膜影响大于花铃期。

不同土层 SWC 的日变化动态如图 3 所示。A 处理耗 水层主要集中在 20~40 cm。蕾期、花铃期,0~10 cm 和 40~50 cm 土层的 SWC 较高,而 10~40 cm 土层 SWC 较 低,但不同土层的 SWC 变化平稳,未出现较大的波动。 吐絮期由于停止灌溉整个土壤剖面 SWC 开始降低。与 A 处理相比,E 处理各土层 SWC 显著低于 A 处理。表层 (0~20cm) SWC 低于土壤有效水,亏缺明显。深层(40~ 50 cm) SWC 最高,但仍显著低于 A 处理,地下深层水消 耗明显。上述分析表明,随着残膜含量的增加表层和深 层 SWC 逐渐降低,接近或低于土壤有效水,各土层出现 不同程度的水分亏缺。此外,2 a 的数据还表明,在灌溉 措施下由于残膜量的增加导致土壤孔隙分布不均,造成 土壤剖面产生水分优势流或水分阻隔效益,SWC 的空间 分布随着灌溉而产生明显的不连续现象。

2.2 残膜对棉花根构型的影响

2.2.1 残膜对根系质量和分布的影响

2a的研究结果表明,随着残膜量的增加,根系质量

图3 2014和2015年不同残膜量处理下各土层体积含水率的日变化动态

Fig.3 Dynamic of daily soil volumetric water content (SWC) changes under different soil layers of cotton at different residual plastic treatments in 2014 and 2015

呈下降趋势(图4)。2014年和2015年,A处理根系总质量 分别为1869和2008 kg/hm²,而E处理对应的根系总质量 分别为855和887 kg/hm²,A处理较E处理根系总生物量 分别增加119%和126%。方差分析表明,A与B处理,C 与D处理间无明显差异(P>0.05),但A、B处理与C、D处 理及E处理间表现出显著的差异性(P<0.05),表明土壤中 的残膜含量的变化对根系的总质量具有显著的影响。

根质量密度(root weight density, RWD)在土壤剖面 的分布情况如图4所示, RWD在土壤中的分布显著受残 膜的影响。其中63%~84% RWD分布于0~20 cm 土层, 80%~95%分布于0~30 cm 的土层范围。各土层范围内 的 RWD,通常均随残膜含量的增加而降低。其中,2014 年 A 处理 RWD 高于 E 处理 75.68%,而 2015 年则高于 E 处理 65.77%。不同土层 RWD 处理间差异表明,0~10 cm 土层,2014年 A、B、C 处理与 D、E 处理间具有显著的差 异,2015年 A 处理间无显著差异。10~20 cm 土层,2014 年无显著差异。2015年 A、B、C 处理与 D、E 处理间具有 显著差异。20~30 cm 土层,2014年 RWD 无显著差异, 2015年 A、B、C 处理与 D、E 处理间具有显著差异。 2015年 A、B、C 处理与 D、E 处理间具有显著差异。上述 分析表明通过 5 个残膜处理 RWD 的分布来看,残膜主要 降低 0~30 cm 土层范围内的 RWD,且较高的残膜量(D和 E 处理)与其他处理间表现出差异的显著性。

图 4 2014 和 2015 年不同残膜处理下棉花根质量及其密度比较 Fig.4 Effects of residual plastic on cotton root weight density and its distribution at different soil depths in 2014 and 2015

2.2.2 残膜对根长密度和分布的影响

根系的根长密度(root length density, RLD)决定植物吸收土壤水分或养分的能力,相比根系质量等指标,在

反映根系生理生态功能方面更有意义。如图5所示A、 B、C处理间无显著差异,2014年A处理与D处理和E处 理具有显著的差异性,E处理与A、B、C处理均具有显著 性差异。2015年A、B、C处理与和E处理间具有显著差 异,D处理与A处理和E处理有显著性差异。其中,2014 年A处理RDL高于E处理51.9%,而2015年则高于E处理 70.8%。上述分析表明平均RLD受残膜含量的影响显著, 随着残膜含量的增加而下降。

RLD在0~50 cm土壤垂直剖面的分布情况如图5所 示。大部分的RLD(62%~68%)存在于0~30 cm的土层 深度。随着土层深度的增加RLD逐渐降低。5个残膜处 理中,RLD的降低趋势随着随残膜含量的增加而增大, 其中0~10 cm 土层范围的 RLD 受残膜影响最小, 20~30 cm 土层范围RLD受残膜影响最大。

2.2.3 残膜对根表面积密度和分布的影响

残膜含量对平均根表面积密度(average root surface area density, ARSAD)的影响如图6所示,随着地膜含量 的增加ARSAD迅速降低。A处理ARSAD数值最大,而 E处理数值最小。A处理ARSAD分别为0.39 cm/cm² (2014年)和0.44 cm/cm²(2015年),较对应的E处理高 195%(2014年)和238%(2015年)。(P<0.05)方差分析表明, 相邻2个残膜量处理间无显著差异,其余处理间则具有 显著差异。

b. 2015年根表面积密度 a. Root surface area density in 2014 b. Root surface area density in 2015

c. 2014年根表面积密度分布 c. Distribution of root surface area density in 2014

d.2015年根表面积密度分布 d. Distribution of root surface area density in 2015

图 6 2014 和 2015 年残膜处理对棉花根表面积密度及其分布的影响

ARSAD在0~50 cm土壤垂直剖面的分布情况如图6 所示。残膜影响 ARSAD 在不同土层的分布, 总体上表 现为ARSAD随着土层深度和残膜含量的增加而下降, 0~30 cm 土层受影响较大, 而 30~50 cm 土层范围影响较 小。其中10 cm 土层,A、B、C处理与D处理和E处理间 具有显著的差异性。20 cm 土层变化幅度最大,除 2014 年A与B处理无显著差异外,其余处理间均具有显著的 差异性。20~30 cm 土层 A 和 B 处理间差异显著, 而 C、D 与 E 处理间无显著的差异。30~50 cm 土层,各处理 ARSAD的变化较小,数值趋于稳定。

2.2.4 残膜对根体积的影响

残膜对根系体积(root volume, RV)的影响如图7所 示。残膜对RV存在一定的影响。2014年A、B处理间无 显著差异,A处理与C、D、E处理间具有显著的差异。 2015年RV随着残膜含量的增多而降低。其中,A、B处理

Fig.6 Effects of plastic film residues on cotton surface area density and its distribution at different soil depths in 2014 and 2015 间无显著差异,C、D处理间无显著差异,A、B与C及E处 理间差异显著。其中,2014和2015年A处理RV最高分别 为13.11 和12.80 cm3(P<0.05),较E处理高4.51 和7.05 cm3,增幅达34.62%和60.16%。

2.2.5 残膜对根系平均直径的影响

根系平均直径(root average diameter, RAD)受残膜 影响显著(图8)。总体上RAD随残膜量的增加而逐渐下 降,2014和2015年A处理RAD最高分别为1.3和1.45mm, 较E处理高0.58和0.65mm,增幅达81.3%和84%。其 中,A和B处理间无显著性差异,C和D处理间无显著性 差异,但2014年,A和B处理与C处理和E处理差异显 著,D处理与E处理差异显著。2015年,A和B处理间无 显著性差异,A处理和B处理与E处理间差异显著,C处 理与A处理和E处理差异显著,D处理与A处理、E处理 差异显著。

图 7 2014和2015年残膜处理对棉花根体积的影响 Fag.7 Effects of plastic film residues on root volume of cotton and its distribution in 2014 and 2015

2.3 残膜对棉花产量及水分利用效率的影响

122

不同残膜量对产量的影响如表 2。2014年C、D、E处 理的平均果枝数与A处理差异显著,果枝数平均减少0.5 左右。虽然果枝数下降,但是果节数无明显变化,因此单 株成铃数之间没有显著差异。2a数据表明,E处理单铃 质量与A处理相比平均下降0.72g,残膜对衣分影响不

大。对于单株籽棉产量和单株皮棉产量而言,A处理与B处理在产量上差异不显著,但C、D和E处理与A处理相比籽棉产量分别平均下降了21.6%、19.9.0%和30.5%(P<0.05),皮棉产量分别平均下降了21.8%、19.7%和31.1%(P<0.05)。水分利用效率随着残膜量而逐渐下降,与A处理相比,E处理水分利用效率平均降低13.69%(P<0.05)。

表2不同残膜处理对棉花产量构成因素的影响									
Table 2	Effects of different film residue treatment cotton	yield and its components							

年份 Year	处理 Treatments	果枝数 Fruit branch number per plant	单株成铃数 Boll per plant	单铃质量 Boll weight/g	衣分 Lint percent- age/%	单株籽棉产量 Seed cotton yield per plant/g	单株皮棉产量 Lint yield per plant/g	水分利用效率 Water use efficiency/ (kg·hm ⁻² ·m ⁻³)
2014	А	6.0b	5.3ab	5.87a	42.4a	31.1a	13.2a	8.3ab
	В	7.1a	5.6a	5.79ab	42.38a	32.4a	13.7a	8.0ab
	С	5.5c	4.1b	5.77ab	42.5a	23.2c	9.8c	7.7bc
	D	5.5c	4.8ab	5.65ab	42.46a	27.7b	11.8b	7.8bc
	Е	5.6c	4.5b	5.63b	42.39a	25.3c	10.7c	7.2d
2015	А	6.8 a	5.3a	5.4a	41.6a	28.4a	11.8a	8.5a
	В	6.2 ab	4.7 a	5.2a	43.2a	24.6a	10.6a	8.1b
	С	6.7 a	4.4ab	5.1 a	42.0 a	23.3b	9.7b	8.3ab
	D	5.8 ab	4.2 b	4.8ab	41.2 a	20.2b	8.4b	7.5bc
	Е	5.1b	4.0 b	4.2 b	41.5 a	16.4c	6.7c	7.3c

注:同列不同字母表示在5%水平下差异显著。

Note: Different letters in a column mean significant at 5%.

2 a 数据表明,与A处理相比,E处理生育期土壤含 水率平均降低了 37.36%,根质量密度平均降低了 70.73%,根长密度平均降低了 61.35%、根表面积密度平 均降了 216.50%、根系体积平均降低了 47.39%、根系平均 直径平均降低了 82.65%。籽棉产量和水分利用效率平 均降低了 18.50%和13.69%。

3 讨论

3.1 残膜对土壤水分分布的影响

地膜覆盖技术具有增温、保墒、抑盐、防草的突出功效,在干旱半干旱地区控制根区土壤盐分累积和水分亏缺的过程中扮演重要的角色,对粮食和经济作物增产的贡献分别为20%~35%和20%~60%^[20]。但随着地膜的长期使用,残膜污染也日益严重,残膜量的存在阻碍土壤水分下渗,使表层土壤的含水率明显高于深层土壤^[10]; 李仙岳等^[30]研究发现,增加残膜量,土壤湿润体减小,入 渗的阻滞作用增强,残膜量过大时,会引起优势流反而 使得湿润面积增大,水分在垂直和水平方向的运移速度 加快。本研究发现,在棉花生长期间0~50 cm 土壤剖面 平均土壤体积含水率(SWC)随着残膜含量的增加而下 降,土壤蓄水能力逐渐降低。而当残膜在0~225 kg/hm² 时,在棉花开花前土壤体积含水率较高,开花后由于受 到灌溉的补给,残膜量在225~900 kg/hm²的土壤体积含 水率有略微的上升,但依然小于残膜量225 kg/hm²。而 在不同土层的土壤体积含水率动态变化上,随着残膜 含量的增加,土壤表层和深层SWC逐渐降低,接近或 低于土壤有效水,各土层出现不同程度的水分亏缺,土 壤深层水消耗逐渐增加。出现该结果过的原因有可能 是残膜破坏了土壤结构残膜量的增加导致土壤空隙分 布不均,造成土壤剖面产生水分优势流或水分阻隔效 益,SWC的空间分布随着灌溉而产生明显的不连续现 象。使表层土壤的含水率明显低于深层土壤,造成深 层土壤水分消耗增加,降低了植株对表土层土壤水分 的吸收。

3.2 残膜对根系构型的影响

根系是作物最活跃的养分和水分吸收器官,在作物 的生长发育和产量形成过程中起着非常重要的作用。残 留地膜对作物根系生长的影响研究较多[31-33],李青军等[34] 研究发现,适量的残膜能够刺激根系的生长,残膜量超过 180 kg/hm²,棉花根系生长指标随残膜量的增加逐渐降 低。而本研究发现,残膜的增加,导致根的质量减少,降 低了 0~30 cm 土层的根质量密度。根长密度的降低趋势 随着随残膜含量的增加而增大,其中0~10 cm 土层受残 膜影响最小,20~30 cm 土层受残膜影响最大。这与赵素 荣^[35]等研究地膜残留阻碍根系的生长,根长和根质量随 地膜残留量的增加而减少结果一致。此外,也有研究认 为随着残膜量增加,棉花根系表面积和总长度增加,根系 直径和体积减小^[36]。本研究的试验结果表明,平均根表 面积密度和根系平均直径,随着土层深度和残膜含量的 增加而下降,0~30 cm 土层受影响较大,而 30~50 cm 土层 范围影响较小。

3.3 残膜对产量和WUE的影响

土壤中存在着大量残膜会影响作物生长环境和自身的生长发育,进而影响到作物产量和水分利用效率^[38]。 许多学者研究认为^[10,33,36],地膜残留可使棉花收获株数、 单株成铃数及单铃质量呈下降趋势,最终导致棉花减产, 一般减幅为1%~23%。本研究通过2a的数据分析结果 表明,残膜量的增加虽然减少了果枝台数,但使果节数增加,因此各处理对单株成铃数影响不大。当残膜量到900 kg/hm²时,单铃质量与无残膜相比下降0.24g,对衣分影 响不大,最终导致棉花产量的降低。其水分利用效率的 变化趋势与产量基本一致,出现该结果的原因可能是残 膜使得土壤水分运移受阻,影响了对水分的吸收,致使残 膜量越大导致棉花产量和水分利用效率越低,同时,残膜 降低了农田耗水量,增加了土壤表层无效蒸发,不利于水 分的有效利用^[29]。

4 结论

地膜残留量对棉田土壤水分分布、根系构型有重要 影响,并影响棉花产量和水分利用。本研究发现,80%~ 95%的根系质量分布于0~30 cm土壤剖面上,该区域是 土壤水分分布及根系构型受残膜污染影响最显著的区 域。随着残膜含量的增加,土壤平均含水率逐渐降低,各 土层出现不同程度的水分亏缺,干燥化程度加剧。2a数 据表明,与A处理相比,E处理生育期土壤含水率平均降 低了 37.36%, 根质量密度平均降低了 70.73%, 根长密度 平均降低了61.35%、根表面积密度平均降了216.50%、根 系体积平均降低了47.39%、根系平均直径平均降低了 82.65%。籽棉产量和水分利用效率平均降低了18.50% 和13.69%。残膜增加阻碍了土壤水分和作物根系的分 布,影响了棉花根系对土壤水分的充分吸收,降低了单株 成铃数和单铃质量,导致棉花产量和水分利用效率显著 下降。因此在水资源短缺的西北内陆棉区采取合理的棉 田净土措施,能够降低残膜污染对土壤水分及根系构型

的影响,利于棉花产量和水分利用效率的提升。

[参考文献]

- [1] 薛颖昊,曹肆林,徐志宇,等. 地膜残留污染防控技术现状及发展趋势[J]. 农业环境科学学报, 2017, 36(8): 1595—1600.
 Xue Yinhao, Cao Silin, Xu Zhiyu, et al. Status and trends in application of technology to prevent plastic film residual pollution[J].
 Journal of Agro-Environment Science, 2017, 36(8): 1595—1600.
 (in Chinese with English abstract)
- [2] Gao H, Yan C, Liu Q, et al. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis[J]. Science of The Total Environment, 2019, 651: 484492.
- [3] Liang H, Hu K, Qin W, et al. Modelling the effect of mulching on soil heat transfer, water movement and crop growth for ground cover rice production system[J]. Field Crops Research, 2017, 201: 97–107.
- [4] Jiang X J, Liu W, Wang, E., et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China[J]. Soil and Tillage Research, 2017, 166: 100–107.
- [5] Sintim H Y, Flury M. Is biodegradable plastic mulch the solution to agriculture's plastic problem? [J]. Environ. Sci. Technol, 2017, 51(3):1068–1069.
- [6] 严昌荣, 刘恩科, 舒帆, 等. 中国地膜覆盖和残留污染特点与防 控技术[J]. 农业环境科学学报, 2014, 31(2): 95—102.
 Yan, Changrong, Liu, Enke, Shu Fan, et al. Review of agricultural plastic mulching and its residual pollution and prevention measures in China[J]. Journal of Agro-Environment Science, 2014, 31 (2): 95—102. (in Chinese with English abstract)
- [7] Kyrikou I, Briassoulis D, Hiskakik M, et al. Analysis of photochemical degradation behaviour of polyethylene mulching film with pro-oxidants[J]. Polymer Degradation and Stability, 2011, 96 (12): 2237—2252.
- [8] Zhang D, Liu H, Hu W, et al. The status and distribution characteristics of residual mulching film in Xinjiang, China[J]. Journal of Integrative Agriculture, 2016, 15(11): 2639–2646.
- [9] He H, Wang Z, Guo L, et al. Distribution characteristics of residual film over a cotton field under long-term film mulching and drip irrigation in an oasis agroecosystem[J]. Soil and Tillage Research, 2018, 180(3): 194–203.
- [10] 解红娥, 李永山, 杨淑巧, 等.农田残膜对土壤环境及作物生长 发育的影响研究[J].农业环境科学学报, 2007(增刊): 153—156.
 Xie Honge, Li Yongshan, Yang Shuqiao, et al. Influence of residual plastic film on soil structure, crop growth and development in fields[J]. Journal of Agro - Environment Science. 2007(S): 153— 156. (in Chinese with English abstract)
- [11] 牛文全, 邹小阳, 刘晶晶, 等. 残膜对土壤水分入渗和蒸发的影 响及不确定性分析[J]. 农业工程学报, 2016, 32(14): 110—119.
 Niu Wenquan, Zou Xiaoyang, Liu Jingjing et al. Effects of residual plastic film mixed in soil on water infiltration, evaporation and its uncertainty analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32 (14): 110—119. (in Chinese with English abstract)
- [12] 王志超,李仙岳,史海滨,等.含残膜土壤水分特征曲线模型构 建[J].农业工程学报,2016,32 (14):103—109.

2019年

Wang Zhichao, Li Xianyue, Shi Haibin, et al. Water characteristic curve model for soil with residual plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32 (14): 103—109. (in Chinese with English abstract)

- [13] Yin M, Li Y, Fang H, et al. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth[J]. Agricultural Water Management, 2019, 216 (2): 127–137.
- [14] 刘志峰. 浅谈残膜污染对棉花生长的影响及应对措施[J]. 石河 子科技, 2009(6): 21-22.
 Liu Zhifeng. Introduction the pollution of the residue film impact on cotton growth and response[J]. Shihezi Science and Technolo-

gy, 2009(6): 21-22. (in Chinese with English abstract)

- [15] 董合干, 刘彤, 李勇冠. 新疆棉田地膜残留对棉花产量及土壤理 化性质的影响[J]. 农业工程学报, 2013, 2(8): 91—99.
 Dong Hegan, Liu Tong, Li Yongguan. Effects of plastic film residue on cotton yield and soil physical and chemical properties in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 2(8): 91—99. (in Chinese with English abstract)
- [16] Zou X, Niu W, Liu J et al. Effects of residual mulch film on the growth and fruit quality of tomato (Lycopersicon esculentum Mill)[J]. Water Air Soil Poll, 2017, 228: 71.
- [17] 颜林,罗巨海,刘兆晨,等.浅析棉田残膜对棉花生产的影响及 对策[J].石河子科技,2007(1):21-22.

Yan Lin, Luo Juhai, Liu Zhaochen, et al. Introduction the pollution of the residue film impact on cotton growth and measures [J]. Shihezi Science and Technology, 2009(1): 21–22. (in Chinese with English abstract)

- [18] 毕继业, 王秀芬, 朱道林. 地膜覆盖对农作物产量的影响[J]. 农业工程学报, 2008, 24(11): 172—175.
 Bi Jiye, Wang Xiufen, Zhu Daolin. Effect of plastic film mulch on crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 2008, 24(11): 172—175. (in Chinese with English abstract)
- [19] Ibarra-Jiménez., Luis., Hugolira-Saldivar., et al. Colored plastic mulches affect soil temperature and tuber production of potato[J]. Acta Agric. Scand, 2011, 61: 365—371.
- [20] Liu E K , He W Q, Yan C R. 'White revolution' to 'white pollution': Agricultural plastic film mulch in China[J]. Environ Res Lett, 2014, 9(9):091001.
- [21] Bai J, Wang J, Chen X, et al. Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of Northwest China[J]. J. Arid Land, 2015(7): 272-284.
- [22] Kim Y, Berger S, Kettering J, et al. Simulation of N₂O emissions and nitrate leaching from plastic mulch radish cultivation with Landscape DNDC[J]. Ecol. Res. 2014, 29: 441–454.
- [23] Yang X, Zhang L J, Li Z, et al. Ecological thought of prevention and cure of agricultural tri-dimension pollution[J]. Acta Ecol Sin, 2005, 25: 904—909.
- [24] Li Q, Li H, Zhang L, et al. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis[J]. Field Crops Research. 2018, 221, 50—60

- [25] Xu C, Tao H, Tian B, et al. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat[J]. Field Crops Research, 2016, 196: 268-275.
- [26] Ali S, Xu Y, Ahmad I, et al. Tillage and deficit irrigation strategies to improve winter wheat production through regulating root development under simulated rainfall conditions[J]. Agricultural Water Management, 2018, 209(7): 44-54.
- [27] Battie Laclau P, Laclau J P. Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil[J]. Field Crops Research, 2009, 114(3): 351–360.
- [28] Ahmadi S H, Sepaskhah A R, Zarei M. Specific root length, soil water status, and grain yields of irrigated and rainfed winter barley in the raised bed and flat planting systems[J]. Agricultural Water Management, 2018, 210(1): 304–315.
- [29] 王 亮, 林涛, 汤秋香, 等. 地膜残留量对新疆棉田蒸散及棵间蒸发的影响[J]. 农业工程学报, 2016, 32(14): 120—128.
 Wang Liang, Lin Tao, Yan Changrong, et al. Effects of plastic film residue on evapotranspiration and soil evaporation in cotton field of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 120—128. (in Chinese with English abstract)
- [30] 李仙岳, 史海滨, 吕烨, 等. 土壤中不同残膜量对滴灌入渗的影响及不确定性分析[J]. 农业工程学报, 2013, 29(8): 84—90.
 Li Xianyue, Shi Haibin, Lü Ye, et al. Effects of different residual plastic film quantities in soil on drip in filtration and its uncertainty analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 84—90. (in Chinese with English abstract)
- [31] 高青海, 陆晓民. 残留地膜对番茄幼苗形态和生理特性的影响
 [J]. 热带亚热带植物学报, 2011, 19(5): 425—429.
 Gao Qinghai, Lu Xiaomin. Effects of plastic film residue on morphology and physiological characteristics of tomato seedlings[J].
 Journal of Tropical and Subtropical Botany, 2011, 19(5): 425—429. (in Chinese with English abstract)
- [32] 祖米来提•吐尔干,林涛,王亮,等.地膜残留对连作棉田土壤氮素、根系形态及产量形成的影响[J].棉花学报,2017,29(4): 374—384.

Zumilaiti · Tuergan, Lin Tao, Wang Liang et al. Effects of plastic film residues on soil nitrogen content, root distribution, and cotton yield during the long-term continuous cropping of cotton[J]. Cotton Science, 2017, 29(4): 374—384. (in Chinese with English abstract)

- [33] 刘建国,李彦斌,张伟,等. 绿洲棉田长期连作下残膜分布及对棉花生长的影响[J]. 农业环境科学学报, 2010, (2):246—250.
 Liu Jianguo, Li Yanbin, Zhang Wei, et al. The distributing of the residue film and influence on cotton growth under continuous cropping in oasis of Xinjiang[J]. Journal of Agro-Environment Science, 2010, (2): 246—250. (in Chinese with English abstract)
- [34] 李青军, 危常州, 雷咏雯, 等. 白色污染对棉花根系生长发育的 影响[J].新疆农业科学,2008(5):769—775.
 Li Qingjun, Wei Changzhou, Lei Yongwen, et al. Influence of white pollution on root growth of cotton[J]. Xin Jiang Agricultural Science, 2008(5): 769—775. (in Chinese with English abstract)

[35] 赵素荣,张书荣,徐霞,等.农膜残留污染研究[J].农业环境与发

展, 1998, 15(3): 7-10.

Zhao Surong, Zhang Shurong, Xu Xia, et al. Study on the situation of residue pollution of mulching plastic film[J]. Agricultural Environment and Development, 1998, 15(3): 7–10. (in Chinese with English abstract)

[36] 何文清,严昌荣,刘爽,等.典型棉区地膜应用及污染现状的研

究[J]. 农业环境科学学报, 2009, 28(8): 1618—1622.

He Wenqing, Yan Changrong, Liu Shuang, et al. The use of plastic mulch film in typical cotton planting regions and the associated environmental pollution[J]. Journal of Agro-Environment Science, 2009, 28(8): 1618—1622. (in Chinese with English abstract)

Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition

Lin Tao^{1,3}, Tang Qiuxiang², Hao Weiping¹, Wu Fengquan², Lei Lei², Yan Changrong¹, He Wenging¹, Mei Xurong¹**

(1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences,

Beijing 100081, China; 2. College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China;

3. Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

Abstract: Plastic film is a key technology of improving agricultural yield in water-shortage area. Root system is an important organ to obtain water and nutrients, and it affects production efficiency of crops through the interaction of root zone environment. The objective of this study was to explore the effects of plastic film residue rate on cotton (Gossypium hirsutum L.) field water environment and root configuration under drip irrigation condition. A field experiment was established with a single factor experiment, completely randomized block design: i.e. 5 levels of plastic film residue rate 0 (A), 225 (B), 450 (C), 675 (D) and 900 kg/hm² (E) application. The experiment was carried out in Southern Xinjiang in 2014 and 2015. In this area, the groundwater depth was 40-50 m. The soil was silt sand. The cotton variety used in this experiment was Xinluzhong 47. During the experiment, the soil water content was periodically measured. Cotton seed yield was measured. Water use efficiency was calculated based on the evaportranspiration. The cotton root diameter, length, volume and surface area were also determined. The results showed that soil moisture and root distribution were affected by plastic film residue rate. Between 80% and 95% of the root biomass was in the 0 to 30 cm soil depth, which was the area most significantly affected by plastic mulch residue for water distribution and cotton root configuration. The average water content of 0-50 cm soil gradually decreased with the increase of plastic film residue rate, and water dominant flow or water barrier benefit was generated, resulting in different degrees of water deficit appeared in each soil layer during the growth period. The average root biomass, root weight density, root length density, root surface area density, root volume and average root diameter were significantly reduced with increased of plastic film residue rate. The yield and water use efficiency were significantly decreased with the increase in plastic residual film rate. Compared to E, the root biomass of treatment A increased by 119% and 126% in 2014 and 2015, respectively, while the root weight density of A increased by 75.68% and 65.77% in 2014 and 2015, respectively. The root length density of A was 51.9% and 70.8% higher than that of E in 2014 and 2015, respectively while the average root surface area of A was 195% and 238% higher than that of E. The root volume of A was 34.62% and 60.16% higher than that of E in 2014 and 2015, respectively while the root average diameter of A was 81.3% and 84% higher than that of E. The 2-year average of the cotton seed yield and water use efficiency of treatment E was decreased by 18.50% and 13.69% compared with treatment A, respectively. Therefore, reasonable measures should be taken to remove plastic film residue and alleviate the negative influence of residual film pollution, which will be conducive to improving yield and water use efficiency in water limiting region.

Keywords: soil moisture; roots; cotton; plastic film residue content; yield and water use efficiency