摘要:
遥感技术获取的区域作物面积与作物面积统计数据间常常存在不一致的问题,这在一定程度上影响了作物分布遥感制图信息的应用。为获得与作物面积统计数据一致的高精度作物分布遥感制图信息,该研究以河北省衡水市武邑县为研究区,以时序Sentinel-2遥感影像生成的归一化差值植被指数(Normalized Difference Vegetation Index, NDVI)为研究数据,将冬小麦面积目视解译数据作为遥感提取的区域冬小麦面积总量参考,提出基于复合型混合演化算法(Shuffled Complex Evolution-University of Arizona, SCE-UA)和区域作物种植面积总量控制的NDVI时序相似性阈值优化冬小麦分布制图方法,并进行精度验证。在此基础上,进一步开展不同生育阶段NDVI时序相似性及其相似性组合的冬小麦分布提取精度对比研究。结果表明,利用全生育期NDVI时序相似性获得的冬小麦分布制图结果总量精度达99.99%以上,总体精度达98.08%,Kappa系数为0.96,可以保证遥感提取的区域冬小麦面积与冬小麦种植面积总量控制参考间的高度一致性且能获得较高的作物遥感识别精度。从不同生育阶段NDVI时序相似性及其相似性组合的冬小麦分布提取结果可知,利用出苗期-分蘖期、返青期-拔节期的NDVI时序可获得高精度冬小麦分布提取结果,而利用抽穗期-成熟期的NDVI时序数据提取冬小麦结果则精度较低,且综合不同生育阶段NDVI时序数据有利于冬小麦制图精度的提高。该研究可为高精度冬小麦分布提取和制图技术及其方案优化提供一定参考依据,也可为遥感数据和作物面积统计数据融合的大范围农作物分布遥感制图及统计数据空间化提供一定技术方法参考和思路借鉴。